
Information and Software Technology 147 (2022) 106825

A
0

M
E
S
a

b

c

A

K
N
M
I
S

1

r
i
d
u
r
f
a

m
s

(

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

ulti-objective integer programming approaches to Next Release Problem —
nhancing exact methods for finding whole pareto front
hi Dong a, Yinxing Xue a,∗, Sjaak Brinkkemper b, Yan-Fu Li c

School of Computer Science and Technology, University of Science and Technology of China, China
Department of Information and Computing Sciences of Utrecht University, Netherlands
Department of Industrial Engineering, Tsinghua University, China

R T I C L E I N F O

eywords:
ext Release Problem
ulti-objective optimization

nteger linear programming
earch-based software engineering

A B S T R A C T

Context: Project planning is a crucial part of software engineering, it involves selecting requirements to
develop for the next release. How to make a good release plan is an optimization problem to maximize the goal
of revenue under the condition of cost, time, or other aspects, namely Next Release Problem (NRP). Genetic
and exact algorithms are used since it was proposed.
Objective: We model NRP as bi-objective (revenue, cost) and tri-objective (revenue, cost, urgency) form, and
investigate whether exact methods could solve bi-objective and tri-objective instances more efficiently.
Methods: The state-of-art integer linear programming (ILP) approach to the bi-objective NRP is 𝜖-constraint
for finding all non-dominate solutions. To improve its efficiency, we employ CWMOIP (Constrained Weighted
Multi-Objective Integer Programming) and I-EC (improved 𝜖-constraint) for solving bi-objective instances. In
tri-objective form, we introduce SolRep, an ILP method that optimizes the reference points from sampling, for
finding solutions subset within a short time. NSGA-II is implemented as the evolutionary algorithm for the
comparison with former methods and it adopts the seeding mechanism.
Results : I-EC can find all non-dominated solutions with better performance than both 𝜖-constraint and
CWMOIP on all instances except for one. I-EC reduces solving time by 19.7% (large instances) and 91.5% (small
instances) on average separately compared with 𝜖-constraint. SolRep can find evenly distributed solutions and
exceed NSGA-II illustrated by several indicators (such as HyperVolume) on tri-objective instances. And each
method has its merit in the aspect of speed and number of the solutions.
Conclusion: (1) The I-EC can solve all non-dominated solutions with better performance than the state-of-art
exact method. (2) SolRep solves large tri-objective instances with more non-dominated solutions and solves
small instances with less time compared with seeded NSGA-II. (3) Seeded NSGA-II shows its advantage on the
number of non-dominated solutions on smaller tri-objective instances.
. Introduction

Requirement engineering describes the needs and constraints of a
eal-world software project [1]. Understanding software requirements
s an essential goal in requirement engineering. Poor or lack of un-
erstanding of users’ requirements increases the risk of not meeting
sers’ needs [2]. For a large project, selecting features for the next
elease plan could be complicated due to the increment of features and
unctions. It may involve revenue, budget, deadline, and many other
spects.

The Next Release Problem (NRP), proposed by Bagnal et al. [3], is
odeled as a single objective problem with maximizing the revenue

ubject to a given budget. In single-objective form, revenue is the only

∗ Corresponding author.
E-mail addresses: dongshi@mail.ustc.edu.cn (S. Dong), yxxue@ustc.edu.cn (Y. Xue), s.brinkkemper@uu.nl (S. Brinkkemper), liyanfu@tsinghua.edu.cn

Y.-F. Li).

thing to be discussed, other criteria such as cost, urgency, dependencies
among requirements are seen as constraints. And for each constraint
configuration, one optimization solution can be found. If trade-off
solutions measured with several criteria are preferred, multi-objective
NRP is naturally introduced, commonly bi-objective NRP with revenue
and cost as objectives appear in many works [4–9].

Multi-Objective Evolutionary Algorithms (MOEA) such as NSGA-
II [10] are adopted for MONRP (Multi-objective NRP) in many stud-
ies [4,5,7,8,11]. But methods mentioned above could hardly find all
optimized solutions due to their randomness and approximation. In [9],
an integer linear programming (ILP) method, named 𝜖-constraint is
introduced to solve bi-objective NRP. 𝜖-constraint is an exact method
vailable online 13 February 2022
950-5849/© 2022 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.infsof.2022.106825
eceived 4 May 2021; Received in revised form 30 December 2021; Accepted 3 Ja
nuary 2022

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:dongshi@mail.ustc.edu.cn
mailto:yxxue@ustc.edu.cn
mailto:s.brinkkemper@uu.nl
mailto:liyanfu@tsinghua.edu.cn
https://doi.org/10.1016/j.infsof.2022.106825
https://doi.org/10.1016/j.infsof.2022.106825
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2022.106825&domain=pdf

Information and Software Technology 147 (2022) 106825S. Dong et al.

𝑥

Table 1
Requirements in a calculator project.

Requirements Precedes Coupling Cost Urgency

Basic operations (r1) Base converter 3 5
Base converter (r2) 2 2
Buttons (r3) GUI 4 3
Digital display (r4) GUI 3 4
GUI (r5) History dialog 5 4
History dialog (r6) GUI 3 1
Logging (r7) History dialog 2 2

Table 2
Requests in a calculator project.

Stakeholders Requests list Revenue

Alice (s1) Base converter, logging 10
Bob (s2) GUI, history dialogue 5

that means it can find optimized solutions rather than approximated
ones.

However, the works mentioned above have the following defects:

(1) MOEA could hardly find all non-dominated solutions.
(2) In real-world cases, many factors would be involved in re-

lease plan selection. More than two objectives NRP are seldom
discussed with exact methods.

(3) For a large NRP with a huge amount of requirements, stake-
holders, objectives, and constraints, it is not easy for exact or
evolutionary methods to find sufficient non-dominated solutions
in a short time.

In our work, we introduce another criterion named urgency on
measuring the importance of a requirement. Revenue and cost are
the basic attributes in the requirement selection problem. Urgency
describe how urgent it is that this feature be implemented and in use
by the stakeholders [12]. In [4] the importance is treated as how much
revenue a requirement could bring. In this paper, we adopt urgency
as another objective along with the revenue to describe requirements
importance, which some requirements are necessarily selected as soon
as possible considering their eagerness. It is evaluated directly or
estimated with the usage frequency by stakeholders.

Here we give an example of a requirement selection problem, in Ta-
ble 1 we describe the requirements of a calculator project, and Table 2
shows stakeholders. Each requirement is associated with cost and ur-
gency ranked from 1(lowest) to 5(highest) and for stakeholders requests
list and revenue value are related to them. We also draw Fig. 1 for
illustrating dependencies between requirements and requests from stake-
holders. For example, the arrow which starts from ‘‘basic operations’’
towards ‘‘base converter’’ denotes requirement ‘‘basic operations’’ is
a prerequisite for selecting requirement ‘‘base converter’’ in the next
release plan. And the arrow from ‘‘base convertor’’ towards ‘‘Alice’’
stands for stakeholder ‘‘Alice’’ requests requirement ‘‘base converter’’.
Besides the dependencies and requests, we also draw the coupling con-
straint with the dashed arrow. For example, the dashed arrow between
‘‘history dialog’’ and ‘‘GUI’’ denotes that if one is selected in the next
release plan, another should also be selected at the same time.

We adopt CWMOIP (Constrained Weighted Multi-Objective Integer
Programming) [13] on bi-objective NRP in this paper, innovated by
Xue and Li’s work [14]. According to their work, CWMOIP is a method
for generating all non-dominated solutions on multi-objective feature
selection optimization problems with considerable efficiency compared
with 𝜖-constraint. Then we propose an I-EC (improved ‘‘EC’’, where
‘‘EC’’ stands for 𝜖-constraint) inspired by CWMOIP to be a trade-off
between 𝜖-constraint and CWMOIP (see Section 4.2). For tri-objective
NRP, a new method SolRep [15] is adopted. We also compare these
methods with an evolutionary algorithm NSGA-II on both bi-objective
2

Fig. 1. Dependencies and requests.

NRP and tri-objective NRP. Furthermore, we implement a seeding
mechanism for NSGA-II which is beneficial for solving NRP according
to [9].

Briefly, our contributions could be summarized as follows:

(1) We adopt CWMOIP and propose I-EC for accelerating 𝜖-
constraint on bi-objective instances for whole Pareto front solv-
ing.

(2) Extend bi-objective NRP with another objective urgency and
discuss both it is seen as a constraint and an objective.

(3) We adopt SolRep for tri-objective NRP to find optimized solu-
tions subset rather than all solutions due to the considerable
solution size of the tri-objective NRP. It successfully finds enough
solutions subject to a given sampling size in large instances and
solves faster than seeded NSGA-II in small instances.

In Section 2, we show the formulations of the Next Release Problem,
general bi-objective NRP, bi-objective with an additional constraint
NRP, and the tri-objective NRP. We also describe some transformation
techniques for simplifying the model. Section 3 shows the current meth-
ods including 𝜖-constraint and NSGA-II. Section 4 proposes CWMOIP,
I-EC, and SolRep on solving multi-objective NRP. Research questions,
experiments, and results are shown in Section 5. Related works and
conclusion are in Sections 6 and 7.

2. Next release problem

In this section, we will show definitions and formulations of Next
Release Problems in our study.

2.1. Problem modeling for NRP

Multi-objective optimization is a very important concept for real-
world problem abstraction. In our work, given a model 𝑀 , require-
ments set is denoted by 𝑅𝑄(𝑀) (𝑅𝑄 = {𝑟1 … 𝑟𝑛}). For each 𝑟𝑖 ∈ 𝑅𝑄(𝑀),
it is a binary value denotes that if the requirement 𝑟𝑖 is chosen for next
release (𝑟𝑖 = 1) or not (𝑟𝑖 = 0). We define stakeholders in the same way,
stakeholders set 𝑆𝐻(𝑀) = {𝑠1 … 𝑠𝑚}. When employ a binary vector

⃗ = {𝑥1,… , 𝑥𝑛, 𝑥𝑛+1,… , 𝑥𝑚+𝑛} ∈ {0, 1}𝑚+𝑛

as the next release plan or the solution of NRP. Note that ∀𝑖 ∈ {1,… , 𝑛}⋅
𝑥𝑖 denotes how the requirement 𝑟𝑖 evaluated, 𝑥𝑖 = 1 when requirement
𝑟𝑖 is selected. It is the same as ∀𝑖 ∈ {𝑛 + 1,… , 𝑛 + 𝑚} ⋅ 𝑥𝑛+𝑖 to 𝑠𝑖, which
means 𝑠𝑖 is satisfied.1

Furthermore, we can give a definition on cost which is relative to
requirements as 𝐶 = {𝑐1,… , 𝑐𝑛}, 𝑐𝑖 is the cost of requirement 𝑟𝑖 (𝑥𝑖). The
urgency is defined in a similar way, 𝑈 = {𝑢1,… , 𝑢𝑛}. The revenue could
be provided by either requirements or stakeholders. When the revenue
is associated with the requirement, we can similarly define the revenue,
𝑊 = {𝑤1,… , 𝑤𝑛}. When it is provided by stakeholders, we assume

1 It is possible that revenue are related to requirements directly, for more
details see Appendix A.

Information and Software Technology 147 (2022) 106825S. Dong et al.

r

O

f
n

d

C

C

C

∃

o

D
d

∀

P
s
j
‘

2

l
r
s
f
c

C
c
{
i
I
b
v
h
‘
a
‘
o

that the revenue brought by the stakeholder would be counted into the
release plan when all his/her requested requirements are selected. And
the revenue related to stakeholders: 𝑊 = {𝑤1,… , 𝑤𝑚} where 𝑤𝑗 is the
evenue provided by stakeholder 𝑠𝑗 (𝑥𝑛+𝑖 in �⃗�).

bjectives. There are three objectives in our work:

Obj 1. Revenue means the revenue gained from a release plan. As
revenue is associated with stakeholders and should be max-
imized, so it should be negative in minimum optimization.

1(�⃗�) = −
𝑚
∑

𝑖=1
𝑤𝑖𝑥𝑛+𝑖 (1)

Obj 2. Cost means the expense and effort in developing on the release
plan which is associated with requirements.

2(�⃗�) =
𝑛
∑

𝑖=1
𝑐𝑖𝑥𝑖 (2)

Obj 3. Urgency describes the urgent need of each requirement. A
requirement is urgent when its estimated usage frequency is
high or very important for some stakeholders.

3(�⃗�) = −
𝑛
∑

𝑖=1
𝑢𝑖𝑥𝑖 (3)

The revenue and urgency should be maximized, so we negate them
or minimizing forms. Note that all three objectives are linear poly-
omials. Thus, the goal of optimization is to find 𝑀𝑖𝑛 (1,2,3)

solutions. We would discuss MONRP with two objectives and three
objectives separately in later sections.

Constraints. Besides objectives, there are other attributes in a NRP. We
use 𝑃 for describing the dependency relationship between requirements.
∀(𝑖, 𝑗) ∈ 𝑃 , 𝑖, 𝑗 ∈ {1,… , 𝑛} shows when requirement 𝑥𝑗 is in the next
release, 𝑥𝑖 should be selected as the prerequisite, in short, 𝑥𝑖 precedes
𝑥𝑗 .

Similarly, requests 𝑄 represents the relationship between require-
ments and stakeholders. For each request,

(𝑖, 𝑗) ∈ 𝑄, 𝑖 ∈ {1,… , 𝑛}, 𝑗 ∈ {𝑛 + 1,… , 𝑛 + 𝑚}

enotes that requirement 𝑥𝑖 is requested by 𝑥𝑗 . A feasible solution needs
be subject to 𝑥𝑗 ≤ 𝑥𝑖. And coupling constraints set 𝑅 describes the
relationship between requirements. ∀(𝑖, 𝑗) ∈ 𝑅, 𝑖, 𝑗 ∈ {1,… , 𝑛} means
that either both of them are selected or non of them are selected in the
next release. For convenience, we will use a boolean value function
indicating whether expression is violated (𝑦 < 𝑥 ⇔ 𝑦 − 𝑥 ≤ 0).

𝛿(𝑥) =

{

1 , 𝑥 > 0
0 , 𝑥 ≤ 0

(4)

st 1. Dependency means there is a topological order among require-
ments.
1(�⃗�) =

∑

(𝑖,𝑗)∈𝑃
𝛿(𝑥𝑗 − 𝑥𝑖) (5)

Since (𝑖, 𝑗) ∈ 𝑃 denotes 𝑥𝑗 ≤ 𝑥𝑖, if 𝑥𝑗 − 𝑥𝑖 > 0 it means 𝑥𝑗 > 𝑥𝑖
which leads to a violation. Then 1(�⃗�) indicates the number of
violated dependencies and 1(�⃗�) = 0 when all dependencies are
satisfied.

st 2. Request means the relationship between requirements and
stakeholders, a stakeholder can request several requirements
meanwhile a requirement can be requested by several stakehold-
ers.
2(�⃗�) =

∑

(𝑖,𝑗)∈𝑄
𝛿(𝑥𝑗 − 𝑥𝑖) (6)

It indicates how many requests are violated and 2(�⃗�) = 0 when
3

all requests are contented. A
st 3. Coupling describes the relationship between two requirements
that both of them should be always selected or not be selected
at the same time.

3(�⃗�) =
∑

(𝑖,𝑗)∈𝑅
𝛿(|𝑥𝑖 − 𝑥𝑗 |) (7)

3(�⃗�) = 0 when all couplings are not violated.2

We say a solution is correct when it does not violate any constraints.
Still for example in Fig. 1, the dependency such as (buttons, GUI)
which denotes buttons should be implemented as GUI is chosen for
the next release, is a constraint of the calculator project. And the
request (logging, Alice) is also a constraint as the stakeholder ‘‘Alice’’
requests the requirement ‘‘logging’’. As requirements ‘‘base converter’’
and ‘‘logging’’ are in the next release, the stakeholder ‘‘Alice’’ would
be satisfied subject to the request constraints (base converter, Alice)
and (logging, Alice), thus ‘‘Alice’’ would provide revenue as revenue is
associated with stakeholders.

Dominate. For multi-objective optimization, commonly we cannot
compare a pair of solutions with a specific order. Given two release
plan �⃗�1 and �⃗�2, their k-dimension objectives are 𝑘(�⃗�1) and 𝑘(�⃗�2).

Definition 1. We say solution �⃗�1 dominates �⃗�2 denoted by (�⃗�1 ≺ �⃗�2)
if
∀𝑖 ∈ {1,… , 𝑘} ⋅ 𝑖(�⃗�1) ≤ 𝑖(�⃗�2)

𝑗 ∈ {1,… , 𝑘} ⋅ 𝑖(�⃗�1) < 𝑗 (�⃗�2)
(8)

therwise �⃗�1 ⊀ �⃗�2, �⃗�1 cannot dominate �⃗�2.

efinition 2. A solution �⃗� and a set of solutions 𝑆�⃗�, �⃗� is non-
ominated if

�⃗�𝑖 ∈ 𝑆�⃗� ⋅ �⃗�𝑖 ⊀ �⃗� (9)

areto front. Correct and non-dominated solutions are Pareto-optimal
olutions. All Pareto-optimal solutions make the true Pareto Front (or
ust Pareto front). In our work, we also use ‘‘optimized solutions’’ and
‘Pareto solutions’’ indicating solutions on the Pareto front.

.2. Transformations

We adopt several transformations in this work for simplifying prob-
ems. The main purpose of these transformations is to eliminate or
educe the number of explicit constraints for the benefit of NSGA-II
ince it cannot handle constraints natively [9]. Besides, these trans-
ormations reduce the number of decision variables which reduce the
omputational complexity for integer linear programming in theory.

oupling removal. This removes the coupling constraints or logic AND
onstraints [9]. For each element 𝑥𝑖, it belongs to an equivalence set
𝑥𝑖, 𝑥(1), 𝑥(2),…}, where 𝑥𝑖 = 𝑥(1) = 𝑥(2) = … . We can use 𝑥𝑖 to
ndicate the equivalence set, so these relations are no longer necessary.
n Fig. 1, requirements ‘‘GUI’’ and ‘‘history dialog’’ are constrained
y a coupling constraint, which means they will also share the same
alue. Thus, we can use a single ‘‘GUI (r5)’’ stands for ‘‘GUI (r5) and
istory dialog (r6)’’ and meanwhile the dependency ‘‘logging’’ precedes

‘history dialog’’ becomes the dependency ‘‘logging’’ precedes ‘‘GUI’’
nd ‘‘Bob’’ requests ‘‘history dialog’’ is replaced by ‘‘Bob’’ requests
‘GUI’’, then the requirement ‘‘history dialog (r6)’’ is removed. The cost
f the new ‘‘r5’’ becomes 8 and the urgency becomes 5 accordingly.

2 Actually there is another kind of constraint in certain instance, see
ppendix B.

Information and Software Technology 147 (2022) 106825S. Dong et al.
Fig. 2. Remove dependencies and couplings.

Dependency removal. This removes the dependencies [3]. For short, a
requirement is requested by some stakeholders, its prerequisites are
also requested by them. For a clear explanation, Fig. 2 shows requests
including original requests and those generated from dependencies.
In Fig. 1, requirement ‘‘digital display’’ and ‘‘buttons’’ precede ‘‘GUI’’.
When ‘‘Bob’’ is satisfied with ‘‘GUI’’ is selected, ‘‘buttons’’ and ‘‘digital
display’’ should be also selected. It is equivalent to ‘‘Bob’’ requests these
two requirements and that is what this transformation does.

To find all prerequisites, we employ a set 𝑃𝑟𝑒(𝑥𝑗). Initially, it would
contain all direct prerequisites of (𝑥𝑗),

∀(𝑖, 𝑗) ∈ 𝑃 ⋅ 𝑥𝑖 ∈ 𝑃𝑟𝑒(𝑥𝑗)

Then, by recursively do this step for each element in 𝑃𝑟𝑒(𝑥𝑗),

𝑃𝑟𝑒(𝑥𝑗) = 𝑃𝑟𝑒(𝑥𝑗)
⋃

𝑥𝑖∈𝑃𝑟𝑒(𝑥𝑗)
𝑃𝑟𝑒(𝑥𝑖)

until 𝑃𝑟𝑒(𝑥𝑗) will not change anymore.
Hence, given a requirement 𝑥𝑖 and its prerequisites 𝑃𝑟𝑒(𝑥𝑖) =

{𝑥𝑖,1, 𝑥𝑖,2,…}, ∀(𝑖, 𝑗) ∈ 𝑄, update 𝑄 with new constraints 𝑥𝑗 ≤ 𝑥𝑖,𝑠, 𝑥𝑖,𝑠 ∈
𝑃𝑟𝑒(𝑥𝑖). For example in former Fig. 1, though stakeholder ‘‘Alice’’
requests ‘‘base converter’’ and ‘‘logging’’, ‘‘Alice’’ also requests ‘‘ba-
sic operations’’ after this transformation because requirement ‘‘basic
operations’’ precedes ‘‘base converter’’.

Stakeholder removal. This removes the requests for evolutionary meth-
ods. When a release plan is made, the requirements are chosen mean-
while the revenue is determinate. It could be simply written as 𝑠𝑗 =
(𝑟(1) ∧ 𝑟(2) ∧ ⋯ ∧ 𝑟(𝑖) ∧ …), ∀(𝑗, (𝑖)) ∈ 𝑄. When all requests for a stake-
holder are satisfied, it contributes its revenue. Thus decision variables
for stakeholders will not occur in an individual, or a ‘‘chromosome’’,
revenue evaluation would be calculated with other objectives at the
same time. Note that this transformation could not be applied with
dependency removal transformation together.

Still using the example in Fig. 1, for an evolutionary method, deci-
sion variables would not contain ‘‘Alice’’ and ‘‘Bob’’. As requirements
are decided in the next release, such as ‘‘basic operations’’, ‘‘base
converter’’ and ‘‘logging’’, then ‘‘Alice’’ is satisfied as all requests are
selected. It is unnecessary to use more variables to indicate whether
‘‘Alice’’ is satisfied but just add revenue provided by ‘‘Alice’’.

2.3. General bi-objective NRP

First, let us focus on two objectives: revenue and cost. The general
bi-objective NRP should maximize revenue and minimize cost, mean-
while, a release plan should be correct which means it should not
violate any dependencies or request constraints.

𝑀𝑖𝑛 1(�⃗�) = −
𝑚
∑

𝑖=1
𝑤𝑖𝑥𝑛+𝑖

𝑀𝑖𝑛 2(�⃗�) =
𝑛
∑

𝑖=1
𝑐𝑖𝑥𝑖

(10)
4

𝑠.𝑡. 1(�⃗�) + 2(�⃗�) + 3(�⃗�) = 0
The example problem in Fig. 2 can be formed as:

𝑀𝑖𝑛 − 10𝑠1 − 5𝑠2
𝑀𝑖𝑛 3𝑟1 + 2𝑟2 + 4𝑟3 + 3𝑟4 + 8𝑟5 + 2𝑟7
𝑠.𝑡. 𝛿(𝑠1 − 𝑟1) + 𝛿(𝑠1 − 𝑟2) + 𝛿(𝑠1 − 𝑟7)

+ 𝛿(𝑠2 − 𝑟3) + 𝛿(𝑠2 − 𝑟4) + 𝛿(𝑠2 − 𝑟5)

+ 𝛿(𝑠2 − 𝑟7) = 0

(11)

2.4. Bi-objective NRP with additional constraint

Further, we adopt another criterion urgency in a formulation as a
constraint but not an objective.

𝑀𝑖𝑛 1(�⃗�) = −
𝑚
∑

𝑖=1
𝑤𝑖𝑥𝑛+𝑖

𝑀𝑖𝑛 2(�⃗�) =
𝑛
∑

𝑖=1
𝑐𝑖𝑥𝑖

𝑠.𝑡. 3(�⃗�) = −
𝑛
∑

𝑖=1
𝑢𝑖𝑥𝑖 ≤ 𝐿

1(�⃗�) + 2(�⃗�) + 3(�⃗�) = 0

(12)

The constraint 3(�⃗�) = −
∑𝑛

𝑖=1 𝑢𝑖𝑥𝑖 ≤ 𝐿 is from the objective 3
mentioned before, it means the minimal urgency value that should be
satisfied. Normally we can set 𝐿 = −𝑙 𝛴𝑖𝑢𝑖 where 𝑙 ∈ (0.0, 1.0) is a
scaling factor. Note that a higher urgency value is preferred as the value
of urgency is negative, so 3 should be less or equal than that bound
𝐿.

Still use example in Fig. 2:

𝑀𝑖𝑛 − 10𝑠1 − 5𝑠2
𝑀𝑖𝑛 3𝑟1 + 2𝑟2 + 4𝑟3 + 3𝑟4 + 8𝑟5 + 2𝑟7
𝑠.𝑡. 𝛿(𝑠1 − 𝑟1) + 𝛿(𝑠1 − 𝑟2) + 𝛿(𝑠1 − 𝑟7)

+ 𝛿(𝑠2 − 𝑟3) + 𝛿(𝑠2 − 𝑟4) + 𝛿(𝑠2 − 𝑟5)

+ 𝛿(𝑠2 − 𝑟7)

+ 𝛿(5𝑟1 + 2𝑟2 + 3𝑟3 + 4𝑟4 + 5𝑟5 + 2𝑟7 − 21𝑙)

= 0

(13)

2.5. Tri-objective NRP

Bi-objective NRP are discussed in many former works [4–9]. For
further discussion, we adopt revenue, cost, and urgency as objectives
together and define tri-objective NRP.

𝑀𝑖𝑛 1(�⃗�) = −
𝑚
∑

𝑖=1
𝑤𝑖𝑥𝑛+𝑖

𝑀𝑖𝑛 2(�⃗�) =
𝑛
∑

𝑖=1
𝑐𝑖𝑥𝑖

𝑀𝑖𝑛 3(�⃗�) = −
𝑛
∑

𝑖=1
𝑢𝑖𝑥𝑖

𝑠.𝑡. 1(�⃗�) + 2(�⃗�) + 3(�⃗�) = 0

(14)

And for example in Fig. 2, the tri-objective form is described as:

𝑀𝑖𝑛 − 10𝑠1 − 5𝑠2
𝑀𝑖𝑛 3𝑟1 + 2𝑟2 + 4𝑟3 + 3𝑟4 + 8𝑟5 + 2𝑟7
𝑀𝑖𝑛 − 5𝑟1 − 2𝑟2 − 3𝑟3 − 4𝑟4 − 5𝑟5 − 2𝑟7
𝑠.𝑡. 𝛿(𝑠1 − 𝑟1) + 𝛿(𝑠1 − 𝑟2) + 𝛿(𝑠1 − 𝑟7)

+ 𝛿(𝑠2 − 𝑟3) + 𝛿(𝑠2 − 𝑟4) + 𝛿(𝑠2 − 𝑟5)

(15)
+ 𝛿(𝑠2 − 𝑟7) = 0

Information and Software Technology 147 (2022) 106825S. Dong et al.

u
c
2
1

w

3

p
s

i
i
l
h
a

f
w
i
c
p
m
M
t
s

a
o
t
P
s
w

Algorithm 1: Multi-Objective EConstraint()
input : 𝑀 : NRP Model, 𝑡: current objective, 𝐶𝑜𝑛𝑠: constraints
output: 𝐸: Solutions

1 𝐸 ← ∅ ;
2 // calculate the theory boundary of 𝑡
3 𝑓𝐿

𝑡 , 𝑓
𝑈
𝑡 ← getObjTheoBound(𝑀 , 𝑡);

4 if 𝑡 = 1 then
5 𝐸 ← bintprog(𝐶𝑜𝑛𝑠, 𝑡);
6 else
7 // set 𝑡 bound
8 for 𝑙 ← 𝑓𝑈

𝑡 ; 𝑙 ≥ 𝑓𝐿
𝑡 ; 𝑙 ← 𝑙 − 1 do

9 𝐶𝑜𝑛𝑠 ← 𝐶𝑜𝑛𝑠 ∪ {𝑡 ≤ 𝑙};
10 𝑀𝐸 ← EConstraint(𝑀 , 𝑡 − 1, 𝐶𝑜𝑛𝑠);
11 𝐸 ← 𝐸 ∪𝑀𝐸;
12 end
13 end
14 return 𝐸;

3. Existing methods

In this section, we would describe methods that are applied on
MONRP before, namely 𝜖-constraint and NSGA-II. 𝜖-constraint is an
exact method aiming at solving the whole Pareto front, meanwhile,
NSGA-II is a heuristic method aiming at finding solutions rapidly which
hardly guarantees to get the whole Pareto front.

3.1. 𝜖-constraint

The use of 𝜖-constraint for solving bi-objective NRP is adopted
in [9]. Its main idea is to maintain only one objective and turn another
objective into constraints with given boundaries. Each constraint’s
upper bounds will iterate from maximum to minimum of the corre-
sponding objective. The pseudocode is shown at Algorithm 1.

Notice that, EConstraint is defined as a recursive function. Func-
tion getObjTheoBound(𝑀,𝑡) calculates the theoretical boundaries
of current objective with NRP model 𝑀 and returns the lower bound
and the upper bound separately. bintprog(𝐶𝑜𝑛𝑠, 𝑡) calls BIP func-
tion for 𝑡, where 𝐶𝑜𝑛𝑠 contain constraints from Conj(𝑀)(constraints
in 𝑀) and those from objectives.

The initial call of 𝜖-constraint is EConstraint(𝑘). Then for each
iteration on bound, it recursive calls EConstraint(𝑘− 1). When it is
to EConstraint(1), BIP solves the optimization problem and return
the solutions.

Algorithm 1 is of the time complexity of 𝑂(𝑛𝑘−1) if we consider that
bintprog() would costs constant time,3 where 𝑘 is the number of
objectives and 𝑛 stands for the estimated range of each objective. For
example, it would solve (𝑚𝑎𝑥(2)−𝑚𝑖𝑛(2))times in general bi-objective
NRP. Note that all coefficients in the problem we discussed are integers,
𝑙 decreases by the step size 1 for finding the whole Pareto front.

Let we explain 𝜖-constraint with example (11). It has two objectives,
we reduce the second objective in this case. The bounds of the second
objective are 0 and 22. Thus the problem is transformed into 22 single

3 The official document of Cplex suggests setting time limits for practical
sage. That is due to the complexity of bintprog() is NP-hard, and it would
ost much time for solving a complex optimization problem (such as on classic-
or classic-4) according to our experience. Fortunately, it would not take over
s on average on other instances.
5

i

Algorithm 2: NSGA-II Main Loop in round 𝑡
input : 𝑀 : NRP Model, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛: iteration times for

generation, 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛: size of population
output: 𝐸: Solutions

1 𝑡 ← 0 ;
2 𝑃𝑡 ← initializePopulation(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) ;
3 𝑄𝑡 ← makeNewPopulation(𝑀 , 𝑃𝑡);
4 while 𝑡 ≤ 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 do
5 𝑅𝑡 ← 𝑃𝑡 ∪𝑄𝑡 ;
6 𝐹 ← fastNonDominatedSort(𝑅𝑡) ;
7 𝑃𝑡+1 ← ∅, 𝑖 ← 1 ;
8 while |𝑃𝑡+1| + |𝐹𝑖| ≤ 𝑁 do
9 crowdingDistanceAssignment(𝐹𝑖) ;
10 𝑃𝑡+1 ← 𝑃𝑡+1 ∪ 𝐹𝑖 ;
11 𝑖 ← 𝑖 + 1 ;
12 end
13 fill(𝑃𝑡+1, sort(𝐹𝑖));
14 𝑄𝑡+1 ← makeNewPopulation(𝑀 , 𝑃𝑡+1);
15 𝑡 ← 𝑡 + 1;
16 end
17 𝐸 ← fastNonDominatedSort(𝑃𝑡 ∪𝑄𝑡) ;
18 return 𝐸 ;

objective optimization problem,

𝑀𝑖𝑛 − 10𝑠1 − 5𝑠2
𝑠.𝑡. 𝛿(𝑠1 − 𝑟1) + 𝛿(𝑠1 − 𝑟2) + 𝛿(𝑠1 − 𝑟7)

+ 𝛿(𝑠2 − 𝑟3) + 𝛿(𝑠2 − 𝑟4) + 𝛿(𝑠2 − 𝑟5)

+ 𝛿(𝑠2 − 𝑟7)

+ 𝛿(𝐿 − 3𝑟1 − 2𝑟2 − 4𝑟3 − 3𝑟4 − 8𝑟5 − 2𝑟7)

= 0

(16)

here L is set from 22 to 0.

.2. NSGA-II

As the evolutionary algorithm used in our work, NSGA-II is pro-
osed by [10] and solves bi-objective NRP in [4,5,7,11]. Algorithm 2
hows the description of the main loop in NSGA-II.

Algorithm 2 shows how NSGA-II updates its population. Initially, 𝑡
s initialized to 0 and 𝑃𝑡 is initialized randomly via function initial-
zePopulation. 𝑄𝑡 is initialized according to the 𝑃𝑡. For the outer

oop, each outer iteration shows how a new population is generated and
ow it updates the 𝑃𝑡. First, 𝑅𝑡 is constructed from current population
nd offspring in generation 𝑡.
fastNonDominatedSort is called for sorting non-dominated

ronts from 𝑅𝑡. Then it comes to the inner loop, distance calculation
ould be applied to front 𝐹𝑖 for each inner iteration. When it leaves the

nner loop, if the size of the last front 𝐹𝑖 in the loop is bigger than va-
ancy, 𝐹𝑖 would be sorted and fill the population. In the end, offspring
opulation 𝑄𝑡+1 would be generated by the selection, crossover, and
utation operations, new individuals would be evaluated by the NRP
odel 𝑀 to find out whether they are feasible and the value of objec-

ives. After the end of the last generation, 𝐸 collects all non-dominated
olutions by sorting 𝑃𝑡 and 𝑄𝑡.

The seeding mechanism is adopted in initializing the population
nd a repair mechanism is adopted both in population initiation and
ffspring generation in NSGA-II. As the algorithm creates the popula-
ion randomly, it also adopts some ‘‘good’’ solutions in the population.
ractically, we randomly select several solutions on the Pareto front
olved by the exact method. It adopts the idea mentioned in the
ork [9]. We also repair the solution as an individual is evaluated both
n initialization and generation. Only request constraints are repaired.

https://www.ibm.com/support/knowledgecenter/SSSA5P_12.10.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/progr_consid/tuning/09_eg_time_limits.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.10.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/progr_consid/tuning/09_eg_time_limits.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.10.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/progr_consid/tuning/09_eg_time_limits.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.10.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/progr_consid/tuning/09_eg_time_limits.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.10.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/progr_consid/tuning/09_eg_time_limits.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.10.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/progr_consid/tuning/09_eg_time_limits.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.10.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/progr_consid/tuning/09_eg_time_limits.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.10.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/progr_consid/tuning/09_eg_time_limits.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.10.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/progr_consid/tuning/09_eg_time_limits.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.10.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/progr_consid/tuning/09_eg_time_limits.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.10.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/progr_consid/tuning/09_eg_time_limits.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.10.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/progr_consid/tuning/09_eg_time_limits.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.10.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/progr_consid/tuning/09_eg_time_limits.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.10.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/progr_consid/tuning/09_eg_time_limits.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.10.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/progr_consid/tuning/09_eg_time_limits.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.10.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/progr_consid/tuning/09_eg_time_limits.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.10.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/progr_consid/tuning/09_eg_time_limits.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.10.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/progr_consid/tuning/09_eg_time_limits.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.10.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/progr_consid/tuning/09_eg_time_limits.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.10.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/progr_consid/tuning/09_eg_time_limits.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.10.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/progr_consid/tuning/09_eg_time_limits.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.10.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/progr_consid/tuning/09_eg_time_limits.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.10.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/progr_consid/tuning/09_eg_time_limits.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.10.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/progr_consid/tuning/09_eg_time_limits.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.10.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/progr_consid/tuning/09_eg_time_limits.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.10.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/progr_consid/tuning/09_eg_time_limits.html

Information and Software Technology 147 (2022) 106825S. Dong et al.
Algorithm 3: CWMOIP()
input : 𝑀 : NRP Model, 𝑡: current objective, 𝐶𝑜𝑛𝑠: constraints,

𝑓 : reduced objective
output: 𝐸: Solutions

1 𝐸 ← ∅ ;
2 𝑤𝑡 ← 1 ;
3 for 𝑖 ← 2; 𝑖 ≤ 𝑘; 𝑖 ← 𝑖 + 1 do
4 𝑓𝐿

𝑖 , 𝑓
𝑈
𝑖 ← GetObjRealBound(𝑀 , 𝑖);

5 𝑤𝑡 ← 𝑤𝑡∕(𝑓𝑈
𝑖 − 𝑓𝐿

𝑖 + 1);
6 end

7 if 𝑡 = 1 then
8 𝑀𝐸 ← bintprog(𝐶𝑜𝑛𝑠, 𝑓);
9 else
10 𝑙 ← 𝑓𝑈

𝑡 ;
11 while 𝑡𝑟𝑢𝑒 do
12 𝑓 ← addObjFuncSuffix(𝑓 , 𝑤𝑡 ⋅ 𝑡) ;
13 𝐶𝑜𝑛𝑠 ← 𝐶𝑜𝑛𝑠 ∪ {𝑡 ≤ 𝑙};
14 𝑀𝐸 ← CWMOIP(𝑀 , 𝑡 − 1, 𝐶𝑜𝑛𝑠, 𝑓);
15 if 𝑀𝐸 = ∅ then
16 break ;
17 𝐸 ← 𝐸 ∪𝑀𝐸 ;
18 𝑙 ← 𝑚𝑎𝑥(𝑡(�⃗�), �⃗� ∈ 𝑀𝐸) − 1
19 end
20 end
21 return 𝐸;

For the constraint that 𝑥𝑖 requests 𝑥𝑗 and 𝑥𝑖 = 1, 𝑥𝑗 = 0, we repair 𝑥𝑗 to
1. Note that the stakeholders are removed for NSGA-II in Section 2.2,
𝑥𝑖 we use here is a logic variable rather than a decision variable.

4. Our approach

4.1. CWMOIP

CWMOIP is another objective reduction technique used in multi-
objective optimization, proposed by Özlen et al.. It could also find
the whole Pareto front as 𝜖-constraint. Besides CWMOIP accelerate
the solving time by two key improvements: (1) CWMOIP uses BIP
for objectives boundaries, subject to the conjunction of constraints
conj(M). (2) CWMOIP reduces objectives by a weighted method to
avoid generating dominated solutions. (3) When iterating bound 𝑙 for
each objective, CWMOIP will calculate the next bound with solutions
instead of using a size-fixed step.

In Algorithm 3 we show the general steps of CWMOIP. The initial
call of this procedure is CWMOIP(𝑀 , 𝑘, ∅, 1). Inside the CWMOIP,
boundaries of 𝑖, 𝑖 ∈ 2,… , 𝑘 are solved first. We use them to get
the weight of 𝑘, 𝑤𝑘 = 1∕(

∏𝑘
𝑖=2(𝑓

𝑈
𝑖 − 𝑓𝐿

𝑖 + 1)). Thus, 𝑘 could be
reduced as a weighted addend in 𝑓 . For bound of 𝑘, it is initially
𝑓𝑈
𝑘 . Then recursively call CWMOIP(𝑀 , 𝑘 − 1, 𝐶𝑜𝑛𝑠, 𝑓) after updating

constraints 𝐶𝑜𝑛𝑠. If none was found, there would not be solutions after
this iteration, so break; otherwise, add solutions in 𝐸. Finally, update
the new bound 𝑙 by subtracting 1 from the upper bound of solutions
in this iteration. After that, CWMOIP(𝑘 − 1) would call 𝙲𝚆𝙼𝙾𝙸𝙿(𝑘 − 2),
recursively to 𝙲𝚆𝙼𝙾𝙸𝙿(1) and employ BIP to find a solution.

From Fig. 3, we can see how CWMOIP reduces the solving time in
the bi-objective minimization problem. Assume we have two objectives
𝑓1 and 𝑓2 and the whole Pareto front is composed by four solutions
𝐸1, 𝐸2, 𝐸3, 𝐸4. 𝜖-constraint would iterate from the upper bound 𝑙0 to the
lower bound 𝑙6 and collect solutions. CWMOIP would use the maximum
of solutions objective value minus 1 as the next bound for constraint
𝑓1 ≤ 𝑙. For example, the bound is initialized as 𝑙0, and 𝐸0 is found, so
we can use 𝑙 = 𝑓 (𝐸) − 1 as the next bound and 𝐸 is found. Then 𝑙
6

1 1 0 1
Fig. 3. Comparison between 𝜖-constraint and CWMOIP.

would be updated as 𝑙4 = 𝑓1(𝐸1) − 1 accordingly, until 𝑙 = 𝑙6 cannot let
solver find more solutions.

According to [13], the maximum number of recursion is
|𝐸|(|𝐸|+1)…(|𝐸|+𝑘−2)

2⋅3⋅…(𝑘−1) .

Still use Fig. 1 as an example, assume we are solving bi-objective
form NRP on this instance. We choose cost as the reduced objective, the
upper bound of cost is 22. So 𝜖-constraint solves maximal revenue value
subject to cost value less or equal to 22. Then cost bound is set as 22,
21, 20, . . . till it touches the lowest bound 0. 𝜖-constraint would solve
23 times. But CWMOIP would behave differently. When cost bound is
set 22, the release plan is to select all requirements. For the next round,
the cost value is set to 21 and the best release plan {basic operations,
base converter, logging} is decided as its cost is 7 and revenue is 10.
Then the cost bound is updated to 7 − 1 = 6 and the solution with 0
revenue and 0 cost is found. Then the algorithm would terminate as it
cannot find any more solutions. The number of solving times decreases
from 23 to 4.

We would explain CWMOIP with an example (16).

𝑀𝑖𝑛 − 10𝑠1 − 5𝑠2
+ (3𝑟1 + 2𝑟2 + 4𝑟3 + 3𝑟4 + 8𝑟5 + 2𝑟7)∕22

𝑠.𝑡. 𝛿(𝑠1 − 𝑟1) + 𝛿(𝑠1 − 𝑟2) + 𝛿(𝑠1 − 𝑟7)

+ 𝛿(𝑠2 − 𝑟3) + 𝛿(𝑠2 − 𝑟4) + 𝛿(𝑠2 − 𝑟5)

+ 𝛿(𝑠2 − 𝑟7)

+ 𝛿(𝐿 − 3𝑟1 − 2𝑟2 − 4𝑟3 − 3𝑟4 − 8𝑟5 − 2𝑟7)

= 0

(17)

L is updated by the solutions found during the algorithm running.

4.2. I-EC

Inspired by CWMOIP, we can make 𝜖-constraint another method
simply replacing its fixed-step iteration with the way used by CWMOIP.
But the reduction of the objective still maintains the 𝜖-constraint way.
That is based on the trade-off between eliminating weak dominated
solution(very close to but not on the Pareto front) and objective poly-
nomial complexity. As we can see in bi-objective NRP, the objective
revenue and costs are constituted by stakeholders 𝑠𝑗 and requirement
𝑟𝑖 separately. 𝜖-constraint would naturally use the last objective as
the reduced objective as CWMOIP would use a weighted sum of each
objective.

Here we would like to explain why the weighted objective can avoid
weak dominated solutions. Assume there is a bi-objective optimization
problem as shown in Fig. 4, the objectives are 𝑓1 and 𝑓2, reduced
objective is 𝑓1. In un-weighted situation (a), bound 𝑙0 lead to the
solution 𝐸1, then bound is updated as 𝑙1 and 𝐸2 is found. If 𝑓2(𝐸1) =
𝑓2(𝐸2), 𝐸2 dominates 𝐸1 (as 𝑓1(𝐸2) ≤ 𝑙1 < 𝑓1(𝐸1)). When we apply a
weighted tactic, the objective become 𝑓2 + 𝑤1𝑓1 (b). Still we assume
𝑓2(𝐸′

1) = 𝑓2(𝐸1) in this case, the objective value of these two solutions
are 𝑓 (𝐸) + 𝑤 𝑓 (𝐸) < 𝑓 (𝐸′) + 𝑤 𝑓 (𝐸′). When 𝑙 = 𝑙 , 𝐸 is
2 1 1 1 1 2 1 1 1 1 1 1

Information and Software Technology 147 (2022) 106825S. Dong et al.
Algorithm 4: I-EC ImprEC()
input : 𝑀 : NRP Model, 𝑡: current objective, 𝐶𝑜𝑛𝑠: constraints,

𝑓 : reduced objective
output: 𝐸: Solutions

1 𝐸 ← ∅ ;
2 𝑓𝐿

𝑖 , 𝑓
𝑈
𝑖 ← GetObjRealBound(𝑀 , 𝑖);

3 if 𝑡 = 1 then
4 𝑀𝐸 ← bintprog(𝐶𝑜𝑛𝑠, 𝑡);
5 else
6 𝑙 ← 𝑓𝑈

𝑡 ;
7 while 𝑡𝑟𝑢𝑒 do
8 𝐶𝑜𝑛𝑠 ← 𝐶𝑜𝑛𝑠 ∪ {𝑡 ≤ 𝑙};
9 𝑀𝐸 ← ImprEC(𝑀 , 𝑡 − 1, 𝐶𝑜𝑛𝑠, 𝑓);
10 if 𝑀𝐸 = ∅ then
11 break ;
12 𝐸 ← 𝐸 ∪𝑀𝐸 ;
13 𝑙 ← 𝑚𝑎𝑥(𝑡(�⃗�), �⃗� ∈ 𝑀𝐸) − 1
14 end
15 end
16 return 𝐸;

Fig. 4. Comparison between un-weighted objective and weighted objective.

solved but not 𝐸′
1. In I-EC weak dominated solutions are not ruled

out due to its implementation as (b). For example, assume there are
two solutions (1, 1) and (1, 2) in an optimization problem with two
minimizing objectives with the second objectives is restricted to ≤ 2
and optimize the first objective. The solver might select (1, 1) or (1, 2)
and could not figure out which one is on the Pareto front as they have
the same value in the first dimension. As we apply a weighted tactic
such as giving a factor 0.1 to the second objective, the optimization
value comes to be 1.1 and 1.2 for solutions (1, 1) and (1, 2). The solver
could find the solution (1, 2) is not a non-dominated solution in a single
optimization.

For a clear explanation, we use example (16) shown in Section 3.1.

𝑀𝑖𝑛 − 10𝑠1 − 5𝑠2
𝑠.𝑡. 𝛿(𝑠1 − 𝑟1) + 𝛿(𝑠1 − 𝑟2) + 𝛿(𝑠1 − 𝑟7)

+ 𝛿(𝑠2 − 𝑟3) + 𝛿(𝑠2 − 𝑟4) + 𝛿(𝑠2 − 𝑟5)

+ 𝛿(𝑠2 − 𝑟7)

+ 𝛿(𝐿 − 3𝑟1 − 2𝑟2 − 4𝑟3 − 3𝑟4 − 8𝑟5 − 2𝑟7)

= 0

(18)

L is updated by the solutions found during the algorithm running.
Note that the optimized objective is the same as the 𝜖-constraint. It
uses 2 decision variables but CWMOIP uses 8. But in a series of solving
with the appliance of 𝜖-constraint, the weak dominated solutions could
be ruled out by solutions from other solving. Such as in Fig. 4, as the
𝑓 is restrict to 𝑙 , it could find at least one solution (𝐸) dominating
7

1 1 2
𝐸1. As we restrict the 𝑓1 from big to small, the weak dominated solu-
tions would be ruled out, which avoids the weak dominated solutions
problem.

4.3. Tri-objective SolRep

Inspired by normal constraint [16] and SolRep [15], we adopt
another search-based method, each solves start from a sampled point
on the utopia plane. The utopia plane is a hyperplane to approximate the
Pareto front, a set of evenly distributed reference points on the utopia
plane would result in a set of evenly distributed solutions on the Pareto
front, after the projection along the normal vector of utopia plane [15].
In our tri-objective NRP, we can find two anchor points by finding each
objective’s optimal solution. Then the uniform sampling is applied on
the line cross two anchors, which is the utopia plane in our problem.
Thus we have points on the utopia plane and employ an ILP solver
to find non-dominated solutions. We would explain how anchors are
calculated with the pseudocode.

Algorithm 5: Tri-objective SolRep

1 𝑦𝑎𝑛𝑐ℎ𝑜𝑟,1 ← bintprog(𝐶𝑜𝑛𝑠, 1) ;
2 𝑦𝑎𝑛𝑐ℎ𝑜𝑟,2 ← bintprog(𝐶𝑜𝑛𝑠, 2) ;
3 𝑑 ← (𝑦𝑎𝑛𝑐ℎ𝑜𝑟,2 − 𝑦𝑎𝑛𝑐ℎ𝑜𝑟,1)∕(𝑁 + 1);

4 𝑃 ← ∅;
5 𝑝 ← 𝑦𝑎𝑛𝑐ℎ𝑜𝑟,1 ;
6 while 𝑝 ≠ 𝑦𝑎𝑛𝑐ℎ𝑜𝑟,2 do
7 𝑝 ← 𝑝 + 𝑑;
8 𝑃 ← 𝑃 ∪ {𝑝} ;
9 end

10 𝐸 ← ∅ ;
11 foreach 𝑝 ∈ 𝑃 do
12 if 𝐸 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑝 then
13 continue
14 end
15 𝐶𝑜𝑛𝑠′ ← 𝐶𝑜𝑛𝑠 ∪ {1 ≤ 𝑝1,2 ≤ 𝑝2};
16 𝑀𝐸 ← bintprog(𝐶𝑜𝑛𝑠′, 3);
17 𝐸 ← 𝐸 ∪𝑀𝐸;
18 end
19 𝐸 ← non-dominated-sort(E);

The first two lines find the anchor points with bintprog, they are
the optimization solutions related to each objective and ignoring others.
In our bi-objective or tri-objective case, the anchors are ‘‘select every re-
quirement’’ (maximal revenue and urgency) and ‘‘do not select anyone’’
(minimal cost). Then the direction 𝑑 between anchors 𝑦𝑎𝑛𝑐ℎ𝑜𝑟,1, 𝑦𝑎𝑛𝑐ℎ𝑜𝑟,2
is calculated. Note that 𝑁 is the number of sampling points. From lines
5 to 9, we initialize point 𝑝 as one anchor point and iterate it to another
anchor point with a fixed step 𝑑. Then we get 𝑁 uniform distribution
points on the utopia plane. For each point, we reduce 1 and 2 by their
value in these dimensions as bounds. Notice that 𝐸 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑝 denotes
that current point 𝑝 is contained in former searching space, thus we
skip these points as it may lead to duplicated solutions.

We illustrate it with Fig. 5, there are 3-dimension objective space,
namely 𝑥1, 𝑥2, 𝑥3 for three objectives. 𝑦1 and 𝑦2 are two anchor points
on 𝑥1, 𝑥2, Utopia plane is the line connected them together. Then we
sample four points 𝑝1 to 𝑝4 on this line, with the same interval. For
each point 𝑝𝑖, we would use its 𝑥1 direction value 𝑝𝑖,𝑥1 and 𝑝𝑖,𝑥2 for 𝑥2
to set bounds of objective constraints 𝑥1 ≤ 𝑝𝑖,𝑥1 and 𝑥2 ≤ 𝑝𝑖,𝑥2 . Thus
there are only one objective 𝑥3 left, we apply an ILP solver on it and
get 𝐸1, 𝐸2, 𝐸3, 𝐸4 subject to points 𝑝1, 𝑝2, 𝑝3, 𝑝4.

To explain much clearly, we use the former example mentioned in
Tables 1 and 2. Requests are shown in Fig. 2 after transformations.
We assume the objectives space (𝑥, 𝑦, 𝑧) where 𝑥 is for the value of

Information and Software Technology 147 (2022) 106825S. Dong et al.
Table 3
Non-dominated solutions of general bi-objective NRP, found by 𝜖-constraint (A), I-EC (B) and CWMOIP (C).

NRP |𝐴| |𝐵| |𝐶| 𝐴 Time (s) 𝐵 Time (s) 𝐶 Time (s) 𝐴 IGD 𝐵 IGD 𝐶 IGD

classic-1 465 465 465 29.81 22.27 23.85 0 0 0
classic-2 4540 4540 4540 48 869.28 48 560.56 49 328.06 0 0 0
classic-3 6296 6296 6296 1195.47 1152.29 1622.61 0 0 0
classic-4 13 489 13 489 13 489 33 594.48 31 526.31 60 617.34 0 0 0
classic-5 2898 2898 2898 259.58 223.38 285.66 0 0 0
realistic-e1 10 331 10 331 10 331 1360.17 1123.20 1515.93 0 0 0
realistic-e2 10 573 10 573 10 573 2261.23 1698.54 2371.83 0 0 0
realistic-e3 8344 8344 8344 773.49 654.21 887.82 0 0 0
realistic-e4 8303 8303 8303 1238.05 881.66 1387.60 0 0 0
realistic-g1 9280 9280 9280 714.27 539.18 701.26 0 0 0
realistic-g2 6393 6393 6393 741.00 450.57 556.38 0 0 0
realistic-g3 8457 8457 8457 619.10 453.86 597.05 0 0 0
realistic-g4 6171 6171 6171 487.49 316.42 395.87 0 0 0
realistic-m1 13 773 13 773 13 773 2884.71 2234.47 3336.91 0 0 0
realistic-m2 12 933 12 933 12 933 3413.91 2486.68 3568.52 0 0 0
realistic-m3 12 624 12 624 12 624 1759.64 1565.75 2034.87 0 0 0
realistic-m4 11 547 11 547 11 547 1746.29 2077.58 2702.83 0 0 0
Baan 793 793 793 22.37 3.94 4.90 0 0 0
Word 189 189 189 3.06 0.64 1.06 0 0 0
ReleasePlanner 71 71 71 51.53 0.16 0.24 0 0 0
Fig. 5. Tri-objective SolRep Example.

revenue, 𝑦 is for the value of cost and 𝑧 is for the value of urgency.
Two anchor points we can deduce from the problem are (0, 0, 0) and
(15, 22, 21). Assume the sampling size is 2, the sampling points are
(5, 7.33, 7), (10, 14.67, 14)together with two anchors (0, 0, 0), (15, 22, 21)
For each sampling point (𝑥, 𝑦, 𝑧), there is an optimization problem:

𝑀𝑖𝑛 − 5𝑟1 − 2𝑟2 − 3𝑟3 − 4𝑟4 − 5𝑟5 − 2𝑟7
𝑠.𝑡. 𝛿(𝑠1 − 𝑟1) + 𝛿(𝑠1 − 𝑟2) + 𝛿(𝑠1 − 𝑟7)

+ 𝛿(𝑠2 − 𝑟3) + 𝛿(𝑠2 − 𝑟4) + 𝛿(𝑠2 − 𝑟5)

+ 𝛿(𝑠2 − 𝑟7) + 𝛿(10𝑠1 + 5𝑠2 − 𝑥)

+ 𝛿(𝑦 − 3𝑟1 − 2𝑟2 − 4𝑟3 − 3𝑟4 − 8𝑟5 − 2𝑟7)

= 0

(19)

5. Evaluation

5.1. Research questions

1. RQ1 Would I-EC and CWMOIP accelerate the Pareto front solv-
ing on bi-objective NRP?

2. RQ2 How would I-EC and CWMOIP behave on bi-objective NRP
with another constraint?

3. RQ3 How efficient would exact methods and NSGA-II deal with
problems with tri-objective NRP?
8

5.2. Setup

5.2.1. Datasets
Our work adopts synthetic and realistic NRP instances. There are 5

synthetic datasets (namely classic datasets) generated and 12 realistic
datasets collected in [6]. They are all public on the Internet,4 Realistic
datasets are collected from bug repositories in three open source soft-
ware projects: Eclipse, Mozilla, and Gnome. Each dataset is described as
requirements cost, stakeholders revenue, dependencies among require-
ments, and requests between stakeholders and requirements.

Additionally, we also adopt realistic datasets from ReleasePlanner
projects used in [17]: Word and ReleasePlanner. In these datasets,
each stakeholder gives a revenue and urgency value for each require-
ment(for ReleasePlanner dataset, its value, and frequency of use). The
cost is associated with the requirement. Each stakeholder 𝑠𝑗 have an
weight 𝑤𝑒𝑖𝑔ℎ𝑡𝑗 . In our work, we calculate revenue follows the way
in [18]. Assume revenue for stakeholder 𝑠𝑗 and requirement 𝑟𝑖 is
𝑤𝑖,𝑗 , 𝑤𝑖 = 𝛴𝑗𝑤𝑒𝑖𝑔ℎ𝑡𝑗𝑤𝑖,𝑗∕𝛴𝑗𝑤𝑒𝑖𝑔ℎ𝑡𝑗 , it is the same to urgency value
𝑢𝑖 = 𝛴𝑗𝑤𝑒𝑖𝑔ℎ𝑡𝑗𝑢𝑖,𝑗∕𝛴𝑗𝑤𝑒𝑖𝑔ℎ𝑡𝑗 . (Floating-point numbers are rounded to
integers.)

Another dataset Baan [19] is also adopted. In this dataset, revenue is
provided by requirements, and costs are calculated with multiple teams’
cooperation (details are in Appendix B).

5.2.2. Environment5
We use jMetal [20] for NSGA-II in Java as our evolutionary

methods. And Cplex(12) [21] is employed as our ILP solver in exact
methods.

The experiments are performed on Ubuntu 20.04 LTS, AMD Ryzen
5 3600 with 48 GB RAM.

The seeding mechanism is adopted and seeds are randomly selected
non-dominated solutions found by the exact methods. Seeds are used in
the progress during population initialization and offspring population
creation [22,23].

The parameters of NSGA-II follow work in [9], population size is
500, crossover probability is 0.8, mutation probability is 1∕𝑛 where 𝑛
is the size of decision variables, maximum evaluation is 100 000 (200

4 Classic and realistic datasets http://oscar-lab.org/people/jxuan/page/
project/nrp/index.htm, MSWord, and ReleasePlanner https://sites.google.
com/site/mrkarim/data-sets.

5 Codes are published at https://github.com/Osinovsky/NRP_MOIP.

http://oscar-lab.org/people/jxuan/page/project/nrp/index.htm
http://oscar-lab.org/people/jxuan/page/project/nrp/index.htm
https://sites.google.com/site/mrkarim/data-sets
https://sites.google.com/site/mrkarim/data-sets
https://github.com/Osinovsky/NRP_MOIP

Information and Software Technology 147 (2022) 106825S. Dong et al.

e

5

e
o

Table 4
Non-dominated solutions of general bi-objective NRP, found by I-EC (A), seeded NSGA-II (B).

NRP |𝐴| |𝐵| |𝑃𝑎𝑟𝑒𝑡𝑜(𝐴)| |𝑃𝑎𝑟𝑒𝑡𝑜(𝐵)| 𝐴 Time (s) 𝐵 Time (s) 𝐴 IGD 𝐵 IGD 𝐴 HV 𝐵 HV 𝐴 SP 𝐵 SP

classic-1 465 205.1 465 61.5 22.27 82.30 0 41.77 1.32106 97% 2.70 5.77
classic-2* 4540 370.9 4540 12.0 48 560.56 545.95 0 268.79 3.70107 94% 1.10 11.91
classic-3 6296 380.2 6296 9.4 1152.29 557.81 0 120.9 5.86107 97% 1.05 11.37
classic-4* 13 489 394.4 13 489 7.3 31 526.31 1909.33 0 475.3 2.18108 94% 0.79 17.18
classic-5 2898 419.0 2898 6.1 223.38 613.24 0 151.39 5.61107 96% 7.47 25.09
realistic-e1 10 331 371.9 10 331 7.8 1123.20 725.54 0 222.16 1.34108 97% 0.84 12.4
realistic-e2 10 572 362.4 10 572 9.2 1698.54 930.79 0 806.38 1.52108 91% 1.07 10.71
realistic-e3 8344 364.7 8344 8.7 654.21 552.79 0 233.07 8.95107 96% 0.85 10.01
realistic-e4 8303 372.3 8303 9.9 881.66 644.49 0 87.95 8.83107 98% 0.98 12.25
realistic-g1 9280 357.6 9280 11.3 539.18 493.24 0 540.82 1.09108 94% 0.86 10.4
realistic-g2 6393 380.93 6393 13.2 450.57 487.83 0 390.54 7.56107 90% 1.83 10.1
realistic-g3 8457 366.7 8457 7.1 453.86 445.66 0 80.39 9.64107 98% 1.14 11.73
realistic-g4 6171 369.3 6171 13.1 316.42 399.76 0 56.11 5.97107 98% 1.21 10.63
realistic-m1 13 773 412.4 13 773 4.9 2234.47 965.65 0 288.81 2.25108 96% 0.66 17.5
realistic-m2 12 933 382.8 12 933 7.0 2486.68 1073.91 0 236.94 1.96108 97% 0.85 14.95
realistic-m3 12 624 396.9 12 624 4.2 1565.75 831.97 0 428.64 1.93108 96% 0.80 13.97
realistic-m4 11 547 378.8 11 547 7.5 2077.58 841.28 0 384.18 1.49108 95% 0.78 12.93
Baan 793 397.1 793 203.5 3.94 4.48 0 61.87 9.56107 100% 43.21 60.03
MSWord 189 186.2 189 181.1 0.64 6.88 0 0.09 2.45105 100% 4.13 4.16
ReleasePlanner 71 71 71 71 0.16 3.56 0 0 2.96106 100% 313.91 313.91
Table 5
Non-dominated solutions of general bi-objective NRP with additional constraint on synthetic datasets, found by 𝜖-constraint (A), I-EC (B) and CWMOIP (C).

NRP |𝐴| |𝐵| |𝐶| 𝐴 Time (s) 𝐵 Time (s) 𝐶 Time (s) 𝐴 IGD 𝐵 IGD 𝐶 IGD

classic-1(0.3) 404 404 404 34.54 25.69 27.68 0 0 0
classic-1(0.5) 340 340 340 32.58 23.47 24.60 0 0 0
classic-1(0.7) 267 267 267 23.94 18.27 18.56 0 0 0
classic-2(0.3) 3938 3938 3938 49 685.10 47 983.96 49 022.28 0 0 0
classic-2(0.5) 3346 3346 3346 15 674.65 15 508.49 17 022.07 0 0 0
classic-2(0.7) 2492 2492 2492 2486.46 2334.24 2915.44 0 0 0
classic-3(0.3) 5318 5318 5318 1658.59 1578.95 2550.44 0 0 0
classic-3(0.5) 4164 4164 4164 1354.55 1071.45 1825.01 0 0 0
classic-3(0.7) 2631 2631 2631 1045.07 629.78 831.59 0 0 0
classic-4(0.3) 11 611 11 611 9411* 34 963.99 30 422.60 61 907.13* 0 0 416.53*
classic-4(0.5) 9422 9422 5932* 25 498.69 21 570.85 36 947.51* 0 0 1331.18*
classic-4(0.7) 6628 6628 6628 8699.78 5711.87 11 181.94 0 0 0
classic-5(0.3) 2429 2429 2429 311.66 233.99 284.22 0 0 0
classic-5(0.5) 1931 1931 1931 328.72 207.16 267.76 0 0 0
classic-5(0.7) 1228 1228 1228 262.77 129.89 154.54 0 0 0
Baan(0.3) 672 672 672 18.29 3.01 3.6 0 0 0
Baan(0.5) 462 462 462 18.52 2.60 2.98 0 0 0
Baan(0.7) 235 235 235 20.04 2.15 2.27 0 0 0
MSWord(0.3) 147 147 147 5.57 0.57 0.89 0 0 0
MSWord(0.5) 111 111 111 6.01 0.44 0.65 0 0 0
MSWord(0.7) 66 66 66 7.35 0.26 0.29 0 0 0
ReleasePlanner(0.3) 50 50 50 46.64 0.11 0.17 0 0 0
ReleasePlanner(0.5) 34 34 34 39.74 0.08 0.10 0 0 0
ReleasePlanner(0.7) 22 22 22 212.47 0.06 0.09 0 0 0
generations) and for smaller instances (Baan, MSWord, and Release-
Planner) maximum evaluation is 50 000 (100 generations). The seeding
probability is set to 2%, repair method is applied for every individual
as it is created in population initialization and offspring generation.
For each instance, NSGA-II would run 30 times, and the results in the
following sections are the average results of 30 runs. The sampling size
in tri-objective SolRep is 2000 for Baan, classic instances, and 200 for
MSWord and ReleasePlanner.

For 𝜖-constraint, CWMOIP, and I-EC, the step of updating bound for
ach iteration is set as 1.

.2.3. Quality indicators
Besides elapsed time and number of non-dominated solutions for

ach method finds, we adopt 3 other indicators for showing the quality
9

f each method on all datasets. HyperVolume (HV) is wildly used for
multi-objective solution set metric [9]. Inverted Generational Dis-
tance (IGD) and Spacing (SP) [24] are also widely used multi-objective
performance indicators.

1. HyperVolume(HV) HyperVolume shows a region which is dom-
inated by a solution set. We implement it with jmetalpy, higher
HV is preferred.

2. Inverted Generational Distance(IGD) Inverted Generational
Distance measures how a solution set approaching the Pareto
front. We also use jmetalpy for this purpose, lower IGD is
preferred.

3. Spacing (SP) Spacing calculates the standard deviation of the
shortest distances from each solution to its nearest solution.

Lower SP value is preferred.

Information and Software Technology 147 (2022) 106825S. Dong et al.
Table 6
Non-dominated solutions of bi-objective NRP with additional constraint, found by I-EC (A) and seeded NSGA-II (B).

NRP |𝐴| |𝐵| |𝑃𝑎𝑟𝑒𝑡𝑜(𝐴)| |𝑃𝑎𝑟𝑒𝑡𝑜(𝐵)| 𝐴 Time (s) 𝐵 Time (s) 𝐴 IGD 𝐵 IGD 𝐴 HV 𝐵 HV 𝐴 SP 𝐵 SP

classic-1(0.3) 404 173.4 404 42.33 25.69 89.73 0 12.4 1.31106 98% 3.09 8.19
classic-1(0.5) 340 146.83 340 41.97 23.47 89.22 0 17.39 1.01106 98% 4.85 9.02
classic-1(0.7) 267 106.53 267 44.1 18.27 86.38 0 16.11 7.42105 98% 6.37 17.38
classic-2(0.3) 3938 361.9 3938 12.33 47 983.96 581.81 0 226.13 3.43107 94% 2.00 12.87
classic-2(0.5) 3346 351.87 3346 12.6 15 508.49 575.28 0 158.56 2.99107 96% 2.53 11.82
classic-2(0.7) 2492 315.63 2492 12.3 2334.24 566.55 0 199.94 2.33107 95% 4.79 10.65
classic-3(0.3) 5318 370.43 5318 12.23 1578.95 601.57 0 360.17 5.18107 93% 2.12 9.18
classic-3(0.5) 4164 360.03 4164 12.1 1071.45 595.24 0 167.73 4.18107 96% 2.56 9.7
classic-3(0.7) 2631 318.27 2631 11.03 629.78 564.46 0 129.94 2.77107 97% 5.33 11.09
classic-4(0.3) 11 611 378.73 11 611 9.23 30 422.60 2030.73 0 570.39 1.99108 94% 1.62 14.11
classic-4(0.5) 9422 378.33 9422 10.3 21 570.85 1996.99 0 425.95 1.66108 95% 1.77 13.38
classic-4(0.7) 6628 347.47 6628 10.83 5711.87 1847.17 0 342.86 1.12108 95% 2.44 16.4
classic-5(0.3) 2429 386.63 2429 9.87 233.99 651.64 0 375.86 4.41107 93% 13.54 17.69
classic-5(0.5) 1931 356.43 1931 11.17 207.16 641 0 519.36 3.30107 90% 17.58 18.67
classic-5(0.7) 1228 311.7 1228 14.53 129.89 608.02 0 430.15 1.87107 91% 25.53 14.17
Baan(0.3) 672 373.67 672 239.03 3.01 4.56 0 45.04 5.68107 100% 36.76 36.74
Baan(0.5) 462 322.27 462 211.73 2.60 4.65 0 23.2 3.72107 100% 45.40 40.91
Baan(0.7) 235 171.43 235 106.23 2.15 4.34 0 38.73 1.82107 100% 85.17 49.36
MSWord(0.3) 147 143.87 147 140.3 0.56 7.23 0 0.1 1.36105 100% 4.57 4.64
MSWord(0.5) 111 110.9 111 110.77 0.47 7.3 0 0 8.04104 100% 4.90 4.9
MSWord(0.7) 66 66 66 65.93 0.19 7.32 0 0 3.63104 100% 5.75 5.75
ReleasePlanner(0.3) 51 49.87 51 49.43 0.15 3.51 0 4.18 1.79106 100% 350.58 352.73
ReleasePlanner(0.5) 34 34 34 34 0.12 3.48 0 0 9.34105 100% 409.52 409.52
ReleasePlanner(0.7) 26 25.87 26 25.77 0.08 3.49 0 1.17 5.25105 100% 425.78 426.46
Table 7
Non-dominated solutions of triple-objective NRP, found by SolRep (A) and seeded NSGA-II (B).

NRP |𝐴| |𝐵| |𝐴 ∩ (𝐴 ∪ 𝐵)| |𝐵 ∩ (𝐴 ∪ 𝐵)| 𝐴 Time (s) 𝐵 Time (s) 𝐴 IGD 𝐵 IGD 𝐴 HV 𝐵 HV 𝐴 SP 𝐵 SP

Baan 739 479.2 739 445.27 13.58 9.32 144.66 165.63 93% 3.271011 47.66 37.55
classic-1 472 477.43 469.77 458.47 81.75 85.27 70.94 83.26 7.78108 99% 1.58 6.54
classic-2 1906 491.7 1906 440.47 13 424.16 571.96 163.61 596.33 8.071010 91% 1.62 26.7
classic-3 1781 492.57 1750.93 445.2 456.34 584.25 429.54 471.29 2.401011 97% 1.99 30.63
classic-4 1844 491.77 1842.57 422.73 4701.53 1936.96 772.83 865.71 2.001012 96% 3.29 67.19
classic-5 1745 493.53 1736.77 428.67 193.45 613.64 397.74 572.33 2.231011 99% 4.87 39.01
Word 138 265.97 130.87 225.67 0.47 7.29 2.02 1.01 4.85107 100% 4.13 4.08
ReleasePlanner 60 214.87 56 214.87 0.28 3.84 149.43 0.11 95% 1.75108 315.28 313.91
a
s
w
s
F
n
P
M
t
f
c
o
w
s

w
s
P

5.3. Answer to RQ1

To answer this question, we implement all instances in bi-objective
form. We compare results of 𝜖-constraint (A), I-EC (B) and CWMOIP (C)
in Table 3. Note that |𝐴| denotes for non-dominated solutions found by
method 𝐴 which is 𝜖-constraint, |𝐵| and |𝐶| are defined in the same
way. Because all three methods can solve the whole Pareto front, it is
unnecessary to adopt all indicators in this case. Thus we only show IGD
in Table 3.

From the table can we observe that |𝐴| = |𝐵| = |𝐶| and IGD of three
methods on all bi-objective instances are zero. These results indicate
solutions found by the three methods are all the same. Both I-EC and
CWMOIP can solve the whole Pareto front as 𝜖-constraint. When it
comes to elapsed time, I-EC spends less time than 𝜖-constraint on all
instances except for realistic-m4. I-EC reduced 17.8% time on average
on large instances (classic and realistic instances) and it is 87.0% on
small instances, namely Baan, MSWord, and ReleasePlanner. However,
CWMOIP requires even more time than 𝜖-constraint on most instances
except for classic-1, realistic-g1 to realistic-g4, Baan, MSWord, and Re-
leasePlanner. In large instances, the ratio of time reduction is −11.3%
on average. A negative value denotes that it fails to accelerate whole
Pareto front solving. For small instances it is 80.9%. These results are
likely to be related to the complexity and size of a problem.

According to our experience, an important factor associated with
time consumption is the complexity of the objective. For 𝜖-constraint
and I-EC, the objective is simply set as the first or the last objective in
light of implementation, as CWMOIP uses a weighted reduced objec-
tive. For example in the classic-2 instance, there are 620 requirements
10
and 500 stakeholders. It would be 620 or 500 decision variables in the
objective in 𝜖-constraint but it comes to 1120 in CWMOIP.

Also, we implement seeded NSGA-II for these instances for com-
parison, and results are shown in Table 4. |𝐴| means non-dominated
solutions found by method 𝐴.

|𝑃𝑎𝑟𝑒𝑡𝑜(𝐴)| denotes the number of solutions found by method 𝐴 that
re on the Pareto front, |𝑃𝑎𝑟𝑒𝑡𝑜(𝐵)| is defined similarly. Smaller HV
cores would be written in a normalized way, which is a percentage
ith respect to the larger one. From Table 4 can we observe that

eeded NSGA-II finds all non-dominated solutions on ReleasePlanner.
or classic and realistic instances, seeded NSGA-II finds 200 to 420
on-dominated solutions, and less than 15 solutions are exactly on the
areto front except for classic-1. In smaller instances (classic-1, Baan,
SWord, and ReleasePlanner), seeded NSGA-II successfully solves more

han 60 Pareto solutions and in MSWord and ReleasePlanner it nearly
inds all of them, but it spends much more time than I-EC. These
onclusions are also supported by the IGD and HV scores. The SP scores
f the NSGA-II results are greater or equal to ones achieved by the I-EC,
hich means solutions found by I-EC are much evenly distributed than

olutions found by NSGA-II.

So the answer to RQ1 is that I-EC can solve the whole Pareto front
ith less time spent by 𝜖-constraint. It accelerates the process of this

olving process in most instances. But CWMOIP can hardly accelerate
areto front solving on large instances.

Information and Software Technology 147 (2022) 106825S. Dong et al.
5.4. Answer to RQ2

To answer this problem, we implement classic datasets, Baan,
MSWord and ReleasePlanner in bi-objective with additional constraint
form. Urgency objective is converted to a constraint and 𝑙 ∈ {0.3, 0.5, 0.7}
as mentioned in Section 2.4. We compare results of 𝜖-constraint (A),
I-EC (B) and CWMOIP (C) in Table 5.6

From Table 5, I-EC methods can solve the whole Pareto front.
CWMOIP solves the whole Pareto front except for classic-4 (0.3) and
classic-4 (0.5) due to our time limit. Results of these two instances are
not involved in the following discussion. On large instances (classic
datasets), I-EC accelerates the whole Pareto front solving by 21.9%
compared with 𝜖-constraint. And it is 93.0% on smaller instances
(Baan, MSWord, and ReleasePlanner). For CMWOIP, they are 1.09%
and 91.2% (excluding classic-4 (0.3) and classic-4 (0.5)).

We also implement seeded NSGA-II for comparison and results are
shown in Table 6. In small instances (MSWord and ReleasePlanner),
seeded NSGA-II can solve the whole or almost the whole Pareto front
but it spends much more time than I-EC does. In classic-1 and Baan
with bounds 0.3, 0.5, and 0.7, I-EC also uses less time and finds more
non-dominated solutions than seeded NSGA-II. IGD and HV indicators
also corroborate these facts. In each instance with each bound factor,
I-EC gains lower or equal SP scores than seeded NSGA-II, which denotes
the much evenly distributed solutions sets.

The answer to RQ2 is that I-EC accelerates the whole Pareto front
solving on bi-objective with an additional constraint.

We can deduce from these results that in small instances (MSWord
and ReleasePlanner), both I-EC and seeded NSGA-II behave well on
finding solutions on the Pareto front. In these instances, solution space
is rather small, less than 200 solutions. exact methods can find them
within a second. For other instances, exact methods can also find all
non-dominated solutions, but time increases as decision variables and
constraints increase.

Fig. 6 are plotted to show the relationship between non-dominated
solutions and elapsed time. Figs. 6a and 6b show it on all instances. As
we mentioned in the former section, the elapsed time is associated with
many factors in the practical study. Instances with many constraints
and decision variables are hard to solve. Thus we remove results on
classic-2 and classic-4 in Figs. 6c and 6d, and in Fig. 6c we add a dash
line to indicate the trending. We can deduce from the figures that I-
EC finds more non-dominated solutions with much time, meanwhile,
it is not observed on seeded NSGA-II. When we investigate the quality
of non-dominated solutions found by seeded NSGA-II (maybe not on
Pareto front), IGD scores are mainly several hundred which shows its
distance from Pareto front and SP values show most solutions sets are
not as evenly distributed as those found by I-EC in Table 4, and most
instances in Table 6 except for Baan and classic-5(0.7).

Due to the similarity between the formulations in RQ1 and RQ2,
we can find out some commonalities from the results. I-EC could find
all non-dominated solutions on both general bi-objective instance and
achieve an acceleration compared with CWMOIP, both with or without
the additional constraint. As compared with seeded NSGA-II in small
instances (classic-1, Baan, MS Word, and ReleasePlanner), I-EC could
find all non-dominated solutions in a short time. In other instances,
the additional constraint makes seeded NSGA-II spends much time on
finding non-dominated solutions, meanwhile, I-EC solves faster as the
searching space is reduced by the additional constraint.

6 Restricted to memory limit, we run CWMOIP with a time limit of 1000 s
for Cplex solver on classic-4 (0.3) and classic-4 (0.5), and it did not find
the whole Pareto front which should be noticed. It already finds less non-
dominated solutions in much time than other methods, thus it does not affect
the conclusion.
11
Fig. 6. Relation between non-dominated solutions and elapsed time.

5.5. Answer to RQ3

To answer this question, we implement tri-objective NRP with
SolRep and seeded NSGA-II adopted. Results are shown in Table 7.

Information and Software Technology 147 (2022) 106825S. Dong et al.

m

n
q

Notice that neither of the two methods can find the whole real Pareto
front theoretically, but a ‘‘Pareto front’’ still can be made up from non-
dominated solutions of the two methods. In this case, a non-dominated
solution is on the Pareto front denotes we did not find any solutions to
dominate it yet. Exact methods like 𝜖-constraint can exam whether it is
on the real Pareto front, but the expenditure of time is not afforded
when searching space is considerably enlarged as another objective
introduced. So in Table 7, we adopt |𝐴 ∩ (𝐴 ∪ 𝐵)| to indicate how many
non-dominated solutions are found by A.

As the third objective is introduced in Table 7, three exact methods
can hardly solve the whole Pareto front, it would take hours for I-EC to
solve the Pareto front even on the smallest synthetic instance classic-1.
SolRep is introduced for finding non-dominated solutions subset. Note
that all solutions found by SolRep are at least weakly dominated. As
we explain the objective reducing mechanism in Fig. 4, SolRep does not
adopt a weighted objective in consideration of efficiency. But we cannot
prove whether a non-dominated solution found by seeded NSGA-II is on
the real Pareto front as it is an approximate algorithm.

In smaller instances MSWord and ReleasePlanner, seeded NSGA-
II find more non-dominated solutions than SolRep, indicated by the
lower IGD score and the higher HV score. It also has a smaller SP
score compared with SolRep. But SolRep spends less time even less
than 0.5 s. For the Baan instance, SolRep finds more solutions that
could not be dominated by the solutions by SolRep or NSGA-II, while
NSGA-II achieves a better HV score and a better SP score. And for other
instances (classic-1 to classic-5), SolRep successfully finds much more
non-dominated solutions with better IGD, HV, and SP scores.

The answer to RQ3 is that for another more objective, exact algo-
rithms aiming at finding all solutions fail to find enough solutions in a
short time, meanwhile seeded NSGA-II shows its efficiency. SolRep is
good at finding evenly distributed and much non-dominated solutions.

5.6. Threat to validity

Representative synthetic datasets. The urgency value is randomly gen-
erated with a uniform distribution in [1, 9], which is not observed
from the real world. It may be not representative or general. In RQ2,
we construct the additional constraint with these values and let the
urgency of the release plan be greater or equal than 𝑙 multiple the
sum of urgency value of all requirements (mentioned in Section 2.4).
In RQ3, we use these urgency values as the coefficients of the third
objective and apply the sampling-based ILP method SolRep and a
genetic algorithm NSGA-II on it. Both of them do not be sensitive to
what exactly the urgency value is of each requirement. Thus it may
affect little to our study. To avoid this kind of problem, we should
collect them from the real world in future works.

Problem instances timeliness. Datasets from [6] and [17] are mainly
projects before 2010. Nowadays, the software is larger and much more
complex than before. Correspondingly, their customers, stakeholders,
requirements, and features might be quite far from 5000 requirements
and stakeholders. For all projects of Mozilla, more than 10 000 new
requirements(defects, enhancements) are still active.78 For Firefox(no
other platforms besides desktop version, only client) itself, it is still
more than 10 000.9 Relations for these requirements are more complex
rather than logic-and, precedence, request, and so on. In the future, we
should collect datasets from real-world projects and model the problem
with more kinds of relations from practical usage.

7 10 000 is the maximum number for a single query in https://bugzilla.
ozilla.org/.
8 Query: Classification: Client Software, Developer Infrastructure, Compo-

ents, Server Software, Other Status: NEW, till Dec 29 2020 PST as we
ueried.

9

12

Query: Classification: Client Software Product: Firefox Resolution: —.
Dedicated or generalized methods. We can hardly say what the ‘‘best’’
performance of evolutionary methods theoretically is due to their
plenty of parameters. Though according to our study, the evolutionary
algorithm NSGA-II with the seeding mechanism does not meet our
exception on solving MONRP compared with exact methods. It is
possible that for a certain NRP instance and certain modeling, some
configurations are rather powerful since we cannot try every configura-
tion. For future work, we may investigate more evolutionary algorithms
and find a better way for seeding and repairing.

6. Related work

Since NRP is proposed in [3] there are many kinds of research
discussing it and focusing on different aspects, such as extending the
problem modeling to characterize real-world features, developing more
efficient algorithms and so on.

Some works are focusing on the modeling of NRP. Zhang et al. [4]
proposed MONRP and Pareto approach solving these problems. They
adopted NSGA-II for MONRP and found it outperforms other weighted
or Pareto approach algorithms (single-objective GA, Pareto GA, Ran-
dom Search). In 2014, Harman et al. [25] developed a requirements
sensitivity analysis for NRP and applied it with Nemhauser–Ullmann’s
(NU) algorithm for solving single-objective instances. Pitangueira et al.
[18,26] model MONRP as risk-aware with three criteria, namely cost,
revenue, and risk and they solved this problem with Z3, SMT and
NSGA-II. Amaral et al. [27] model a risk-aware constrained bi-objective
NRP, applies evolutionary algorithms on it. Mougouei and Powers [28]
work on integrating value dependencies of requirements selection. The
dependency could be positive, 0, or negative, where 0 denotes no
dependency, negative and positive number denotes the quality and the
strength of the explicit value dependency. They adopt a fuzzy-based
optimization method for this problem.

For robust NRP, Paixao et al. [29] proposed scenario-based robust
NRP formulation and solved it with simulated annealing and genetic
algorithm. Li et al. [30] proposed the Monte-Carlo simulation robust
MONRP dealing with uncertainty and developed two methods MCNRP-
US (concerning NRP uncertainty size) and MCNRP-R (concerning NRP
risk) for different aspects.

Aydemir et al. [31] proposed goal-oriented requirements engineer-
ing (GORE) to the next release problem and modeled the problem into
SMT/OMT formulas. And for more objectives, Geng et al. [11] model
many-objective NRP, up to five objectives and employs state-of-art
genetic algorithms on those problems. In 2019, Etgar et al. [32] pro-
posed the several-release-problem for f planning for the entire scope of
product releases in the planning horizon. They introduced a clustering
enhanced searching technique for solving this problem.

Many works tend to heuristic methods for solving NRP, such as evo-
lutionary and genetic methods. In 2011, Durillo et al. [5] used NSGA-II,
MOCell, and PAES for solving bi-objective NRP. And in 2013, Zhang
et al. [7] improved NSGA-II with archive and repair method. Also,
they proposed and, or, precedence, cost- and value-based constraints
in MONRP modeling. Cai and Wei [33] employ a hybrid method of
decomposition and domination-based evolutionary algorithm for mul-
tiple objectives NRP. Silva et al. [34] proposed a path relinking based
method for generating initial population within the multi-objective
genetic algorithm and found it outperformed the random initialized
method on MoCell and NSGA-II.

Zhang et al. [35] proposed a two-phase external archive guided
multi-objective evolutionary algorithm (2EAG-MOEA/D) for solving
MONRP. The two-phase evolutionary process is composed of the con-
vergence and diversity phase and it outperforms MOEA/D and NSGA-II.
In 2016, Kumari et al. [36] proposed using quantum-inspired evolu-
tionary algorithms namely QEMEA, QMDEA, and MQHDE for solv-
ing MONRP. Zhang et al. [19] investigated hyper- and meta-heuristic
methods for solving MONRP and found hyper-heuristic NSGA-II out-

performed others as a single method and suggested that it might be

https://bugzilla.mozilla.org/
https://bugzilla.mozilla.org/

Information and Software Technology 147 (2022) 106825S. Dong et al.

s
e
e
a

2
(
H
p
e
s
A

7

w
a
j
b
s
s

a
t

A

d
o
r
t
w
{
c
𝑟

∀

R

better for combining results found by other heuristic methods such as
hyper-heuristic Hill Climbing and hyper-heuristic Simulated Annealing.

The ILP, anytime methods using exact solvers for MONRP are
discussed in several works. In 2015, Veerapen et al. [9] start to use
the exact method, namely 𝜖-constraint, for capturing all non-dominated
olutions, as the state-of-art search-based method. Domínguez-Ríos
t al. [37] first use exact method in anytime methods. They could find
nough supported and non-supported solutions for bi-objective NRP
nd be able to find the whole Pareto front in a sufficient time.

There are also many works on warm and colony optimization. In
015, Botelho et al. [38] investigated Particle Swarm Optimization
PSO) and Ant Colony Optimization (ACO) on three classic datasets.
amdy and Mohamed [39] adopt a hybrid approach based on im-
roved binary particle swarm optimization on bi-objective NRP. Zhang
t al. [40] implement particle swarm optimization for finding optimal
ubset on multi-objective NRP. Balogun et al. [41] develop a hybrid of
nt Colony and Tabu Search for solving bi-objective NRP.

. Conclusion

In our study, we formed NRP as a bi-objective optimization problem
ith maximizing revenue and minimizing cost. Further, we introduce
nother objective urgency as an additional constraint or the third ob-
ective. We use existing datasets and generate some synthetic datasets
ased on them before comparing algorithm performance on the large-
cale problem. Several algorithms are applied on these MONRP in-
tances, namely 𝜖-constraint, I-EC, CWMOIP, SolRep, and NSGA-II as an

evolutionary algorithm for comparison purposes. We found CWMOIP
could hardly accelerate 𝜖-constraint efficiency and I-EC behaves best
on almost all datasets with two objectives. For tri-objective instances,
seeded NSGA-II is good at finding non-dominated solutions in a short
time. The quality of solutions found by SolRep is better on the large
instance.

In conclusion, ILP is still an efficient method for generating non-
dominated solutions. For more objectives, we may adopt other sam-
pling methods to capture evenly distributed solutions on the Pareto
front. Seeded NSGA-II shows its potentiality in solving smaller scale
instances, other seeding mechanisms and repair methods evolutionary
algorithm is worthy of further studying.

CRediT authorship contribution statement

Shi Dong: Software, Writing – original draft. Yinxing Xue: Super-
vision, Methodology, Writing – review & editing. Sjaak Brinkkemper:
Data Curation, Writing - review & editing. Yan-Fu Li: Conceptualiza-
tion, Methodology.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work is supported by the National Natural Science Foundation
of China (Grant No.61972373) and the Basic Research Program of
Jiangsu Province (Grant No. BK20201192). Thank Prof. Nadarajen
Veerapen for sharing source codes with us. Thank IBM for providing
an academic license for using Cplex in our research. We appreciate a
lot for Prof. Jifeng Xuan, and Dr. Muhammad Rezaul Karim sharing or
13

publishing their datasets.
Appendix A. Revenue

Besides the case that revenue is associated with stakeholders, the
revenue may be simply related to the requirements themselves. For
classic and realistic instances, revenue is calculated with stakeholders.
For Baan, MSWord, and ReleasePlanner they are associated require-
ments.

𝑀𝑖𝑛 1(�⃗�) = −
𝑛
∑

𝑖=1
𝑤𝑖𝑥𝑖

𝑀𝑖𝑛 2(�⃗�) =
𝑛
∑

𝑖=1
𝑐𝑖𝑥𝑖

𝑠.𝑡. 1(�⃗�) + 2(�⃗�) + 3(�⃗�) = 0

And for bi-objective with another constraint and tri-objective, they
re defined in the same way. For convenience, we just address the way
hat classic and realistic instances are modeled in the discussion above.

ppendix B. Constraint

We inform that there are three kinds of constraints which are
ependency, request, and coupling in our work. There is another kind
f constraint we used for the dataset Baan. In this dataset, the cost of a
equirement is calculated as the cooperation of multiple teams and each
eam works on several requirements. Thus there is a constraint that
orkload of each team is limited. Assume teams are {𝑡1, 𝑡2,… , 𝑡𝑟}, 𝑡𝑗 ∈
0, 1} and capacity for team 𝑡𝑗 is 𝐶𝑎𝑝(𝑡𝑗). Assume requirement 𝑟𝑖 would
ost 𝑙𝑖,1𝑡1 + 𝑙𝑖,2𝑡2 +⋯ + 𝑙𝑖,𝑟𝑡𝑟 where 𝑙𝑖,𝑗 is the cost of team 𝑡𝑗 working on
𝑖. So the additional constraints used by Baan are shown below.

𝑗 ⋅
𝑛
∑

𝑖=0
𝑙𝑖,𝑗 𝑡𝑖 ≤ 𝐶𝑎𝑝(𝑡𝑗)

eferences

[1] A.M. Pitangueira, R.S.P. Maciel, M. Barros, Software requirements selection
and prioritization using sbse approaches: A systematic review and mapping
of the literature, J. Syst. Softw. 103 (2015) 267–280, http://dx.doi.org/10.
1016/j.jss.2014.09.038, URL http://www.sciencedirect.com/science/article/pii/
S0164121214002118.

[2] W.W. Sim, P.S. Brouse, Empowering requirements engineering activities with
personas, Procedia Comput. Sci. 28 (2014) 237–246, http://dx.doi.org/10.
1016/j.procs.2014.03.030, URL http://www.sciencedirect.com/science/article/
pii/S1877050914000933. 2014 Conference on Systems Engineering Research.

[3] A.J. Bagnall, V.J. Rayward-Smith, I.M. Whittley, The next release problem,
Inf. Softw. Technol. 43 (14) (2001) 883–890, http://dx.doi.org/10.1016/S0950-
5849(01)00194-X.

[4] Y. Zhang, M. Harman, S.A. Mansouri, The multi-objective next release prob-
lem, in: Proceedings of GECCO 2007: Genetic and Evolutionary Computation
Conference, 2007, pp. 1129–1137, http://dx.doi.org/10.1145/1276958.1277179.

[5] J.J. Durillo, Y. Zhang, E. Alba, M. Harman, A.J. Nebro, A study of the bi-objective
next release problem, in: Empirical Software Engineering, Vol. 16, 2011, pp.
29–60, http://dx.doi.org/10.1007/s10664-010-9147-3.

[6] J. Xuan, H. Jiang, Z. Ren, Z. Luo, Solving the large scale next release problem
with a backbone-based multilevel algorithm, IEEE Trans. Softw. Eng. 38 (5)
(2012) 1195–1212, http://dx.doi.org/10.1109/TSE.2011.92.

[7] Y. Zhang, M. Harman, S.L. Lim, Empirical evaluation of search based require-
ments interaction management, Inf. Softw. Technol. 55 (1) (2013) 126–152,
http://dx.doi.org/10.1016/j.infsof.2012.03.007.

[8] M.R. Karim, G. Ruhe, Bi-objective genetic search for release planning in support
of themes, in: Lecture Notes in Computer Science (Including Subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), in: LNCS,
vol. 8636, 2014, pp. 123–137, http://dx.doi.org/10.1007/978-3-319-09940-8_9.

[9] N. Veerapen, G. Ochoa, M. Harman, E.K. Burke, An integer linear programming
approach to the single and bi-objective next release problem, Inf. Softw. Technol.
65 (2015) 1–13, http://dx.doi.org/10.1016/j.infsof.2015.03.008, URL http://
www.sciencedirect.com/science/article/pii/S0950584915000658.

[10] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective
genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182–197,
http://dx.doi.org/10.1109/4235.996017.

[11] J. Geng, S. Ying, X. Jia, T. Zhang, X. Liu, L. Guo, J. Xuan, Supporting many-
objective software requirements decision: An exploratory study on the next
release problem, IEEE Access 6 (2018) 60547–60558.

http://dx.doi.org/10.1016/j.jss.2014.09.038
http://dx.doi.org/10.1016/j.jss.2014.09.038
http://dx.doi.org/10.1016/j.jss.2014.09.038
http://www.sciencedirect.com/science/article/pii/S0164121214002118
http://www.sciencedirect.com/science/article/pii/S0164121214002118
http://www.sciencedirect.com/science/article/pii/S0164121214002118
http://dx.doi.org/10.1016/j.procs.2014.03.030
http://dx.doi.org/10.1016/j.procs.2014.03.030
http://dx.doi.org/10.1016/j.procs.2014.03.030
http://www.sciencedirect.com/science/article/pii/S1877050914000933
http://www.sciencedirect.com/science/article/pii/S1877050914000933
http://www.sciencedirect.com/science/article/pii/S1877050914000933
http://dx.doi.org/10.1016/S0950-5849(01)00194-X
http://dx.doi.org/10.1016/S0950-5849(01)00194-X
http://dx.doi.org/10.1016/S0950-5849(01)00194-X
http://dx.doi.org/10.1145/1276958.1277179
http://dx.doi.org/10.1007/s10664-010-9147-3
http://dx.doi.org/10.1109/TSE.2011.92
http://dx.doi.org/10.1016/j.infsof.2012.03.007
http://dx.doi.org/10.1007/978-3-319-09940-8_9
http://dx.doi.org/10.1016/j.infsof.2015.03.008
http://www.sciencedirect.com/science/article/pii/S0950584915000658
http://www.sciencedirect.com/science/article/pii/S0950584915000658
http://www.sciencedirect.com/science/article/pii/S0950584915000658
http://dx.doi.org/10.1109/4235.996017
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb11
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb11
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb11
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb11
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb11

Information and Software Technology 147 (2022) 106825S. Dong et al.
[12] D. Olson, Matrix prioritization, 2014, URL http://www.bawiki.com/wiki/Matrix-
Prioritization.html.

[13] M. Özlen, M. Azizoǧlu, Multi-objective integer programming: A general approach
for generating all non-dominated solutions, European J. Oper. Res. 199 (1)
(2009) 25–35, http://dx.doi.org/10.1016/j.ejor.2008.10.023.

[14] Y. Xue, Multi-objective integer programming approaches for solving, in: 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE), 2018,
pp. 1231–1242.

[15] Y. Xue, Y.-F. Li, Multi-objective integer programming approaches for solving the
multi-criteria test-suite minimization problem, ACM Trans. Softw. Eng. Methodol.
29 (3) (2020) 1–50, http://dx.doi.org/10.1145/3392031, URL https://dl.acm.
org/doi/10.1145/3392031.

[16] A. Messac, C.A. Mattson, Normal constraint method with guarantee of even
representation of complete Pareto frontier, AIAA J. 42 (10) (2004) 2101–2111,
http://dx.doi.org/10.2514/1.8977.

[17] M.R. Karim, G. Ruhe, Bi-objective genetic search for release planning in support
of themes, in: C. Le Goues, S. Yoo (Eds.), Search-Based Software Engineering,
Springer International Publishing, Cham, 2014, pp. 123–137.

[18] A. Pitangueira, P. Tonella, A. Susi, R. Maciel, M. Barros, Minimizing
the stakeholder dissatisfaction risk in requirement selection for next re-
lease planning, Inf. Softw. Technol. 87 (2017) 104–118, http://dx.doi.org/10.
1016/j.infsof.2017.03.001, URL http://www.sciencedirect.com/science/article/
pii/S0950584917301829.

[19] Y. Zhang, M. Harman, G. Ochoa, G. Ruhe, S. Brinkkemper, An empirical study
of meta- and hyper-heuristic search for multi-objective release planning, ACM
Trans. Softw. Eng. Methodol. 27 (1) (2018) 1–32, http://dx.doi.org/10.1145/
3196831, URL https://dl.acm.org/doi/10.1145/3196831.

[20] A.J. Nebro, J.J. Durillo, M. Vergne, Redesigning the jmetal multi-objective
optimization framework, in: Proceedings of the Companion Publication of the
2015 Annual Conference on Genetic and Evolutionary Computation, in: GECCO
Companion ’15, Association for Computing Machinery, New York, NY, USA,
2015, pp. 1093–1100, http://dx.doi.org/10.1145/2739482.2768462.

[21] I.I. Cplex, V12. 1: User’s manual for CPLEX, Int. Bus. Mach. Corp. 46 (53) (2009)
157.

[22] T. Friedrich, M. Wagner, Seeding the initial population of multi-objective
evolutionary algorithms: A computational study, Appl. Soft Comput. 33
(2015) 223–230, http://dx.doi.org/10.1016/j.asoc.2015.04.043, URL http://
www.sciencedirect.com/science/article/pii/S1568494615002707.

[23] T. Chen, M. Li, X. Yao, On the effects of seeding strategies: A case for search-
based multi-objective service composition, in: Proceedings of the Genetic and
Evolutionary Computation Conference, in: GECCO ’18, Association for Computing
Machinery, New York, NY, USA, 2018, pp. 1419–1426, http://dx.doi.org/10.
1145/3205455.3205513.

[24] C. Audet, J. Bigeon, D. Cartier, S. Le Digabel, L. Salomon, Performance
indicators in multiobjective optimization, European J. Oper. Res. 292 (2)
(2021) 397–422, http://dx.doi.org/10.1016/j.ejor.2020.11.016, URL https://
www.sciencedirect.com/science/article/pii/S0377221720309620.

[25] HarmanMark, KrinkeJens, Medina-BuloInmaculada, Palomo-LozanoFrancisco,
Renjian, YooShin, Exact scalable sensitivity analysis for the next release problem,
2014, Undefined.

[26] A.M. Pitangueira, P. Tonella, A. Susi, R.S. Maciel, M. Barros, Risk-aware multi-
stakeholder next release planning using multi-objective optimization, in: Lecture
Notes In Computer Science (Including Subseries Lecture Notes In Artificial
Intelligence And Lecture Notes In Bioinformatics), Vol. 9619, Springer Verlag,
2016, pp. 3–18, http://dx.doi.org/10.1007/978-3-319-30282-9_1.
14
[27] A. Amaral, G. Elias, A risk-driven multi-objective evolutionary approach for
selecting software requirements, Evol. Intell. 12 (3) (2019) 421–444, http://dx.
doi.org/10.1007/s12065-019-00237-2.

[28] D. Mougouei, D.M.W. Powers, Dependency-aware software release planning
through mining user preferences, Soft Comput. 24 (15) (2020) 11673–11693,
http://dx.doi.org/10.1007/s00500-019-04630-y.

[29] M. Paixão, J. Souza, A scenario-based robust model for the next release problem,
in: GECCO 2013 - Proceedings of the 2013 Genetic and Evolutionary Compu-
tation Conference, 2013, pp. 1469–1476, http://dx.doi.org/10.1145/2463372.
2463547.

[30] L. Li, M. Harman, E. Letier, Y. Zhang, Robust next release problem: Handling
uncertainty during optimization, in: GECCO 2014 - Proceedings of the 2014
Genetic and Evolutionary Computation Conference, Association for Computing
Machinery, 2014, pp. 1247–1254, http://dx.doi.org/10.1145/2576768.2598334.

[31] F.B. Aydemir, F. Dalpiaz, S. Brinkkemper, P. Giorgini, J. Mylopoulos, The next
release problem revisited: A new avenue for goal models, in: Proceedings -
2018 IEEE 26th International Requirements Engineering Conference, RE 2018,
Institute of Electrical and Electronics Engineers Inc., 2018, pp. 5–16, http:
//dx.doi.org/10.1109/RE.2018.00-56.

[32] R. Etgar, R. Gelbard, Y. Cohen, Presenting the several-release-problem and its
cluster-based solution accelartion, Int. J. Prod. Res. 57 (14) (2019) 4413–4434,
http://dx.doi.org/10.1080/00207543.2017.1404657.

[33] X. Cai, O. Wei, A hybrid of decomposition and domination based evolutionary
algorithm for multi-objective software next release problem, in: 2013 10th IEEE
International Conference on Control and Automation (ICCA), 2013, pp. 412–417,
http://dx.doi.org/10.1109/ICCA.2013.6565143.

[34] T.G.N. Da Silva, L.S. Rocha, J.E.B. Maia, An effective method for MOGAs
initialization to solve the multi-objective next release problem, in: Lecture Notes
in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), Vol. 8857, Springer Verlag, 2014, pp.
25–37, http://dx.doi.org/10.1007/978-3-319-13650-9_3.

[35] N. Zhang, Y. Huang, X. Cai, A two-phase external archive guided multiobjective
evolutionary algorithm for the software next release problem, in: Communica-
tions in Computer and Information Science, Vol. 562, Springer Verlag, 2015, pp.
664–675, http://dx.doi.org/10.1007/978-3-662-49014-3_59.

[36] A.C. Kumari, K. Srinivas, Comparing the performance of quantum-inspired
evolutionary algorithms for the solution of software requirements selection
problem, Inf. Softw. Technol. 76 (2016) 31–64, http://dx.doi.org/10.1016/j.
infsof.2016.04.010.

[37] M.A. Domínguez-Ríos, F. Chicano, E. Alba, I.M.D. Águila, J. Sagrado, Efficient
anytime algorithms to solve the bi-objective next release problem, J. Syst. Softw.
156 (2019) 217–231.

[38] G. Botelho, A. Rocha, A. Britto, L. Silva, Investigating bioinspired strategies to
solve large scale next release problem, 2015, Undefined.

[39] A. Hamdy, A. Mohamed, Greedy binary particle swarm optimization for multi-
objective constrained next release problem, Int. J. Mach. Learn. Comput. 9 (5)
(2019) 561–568.

[40] Y. Zhang, H. Li, R. Bu, C. Song, T. Li, Y. Kang, T. Chen, Fuzzy multi-objective
requirements for NRP based on particle swarm optimization, in: X. Sun, J. Wang,
E. Bertino (Eds.), Artificial Intelligence and Security, Springer International
Publishing, Cham, 2020, pp. 143–155.

[41] B.A. Oluwagbemiga, S.J.A. Basri Shuib, G. Mariam, A.A. Thabeb, A Hybrid ant
Colony Tabu Search Algorithm for Solving Next Release Problems.

http://www.bawiki.com/wiki/Matrix-Prioritization.html
http://www.bawiki.com/wiki/Matrix-Prioritization.html
http://www.bawiki.com/wiki/Matrix-Prioritization.html
http://dx.doi.org/10.1016/j.ejor.2008.10.023
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb14
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb14
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb14
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb14
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb14
http://dx.doi.org/10.1145/3392031
https://dl.acm.org/doi/10.1145/3392031
https://dl.acm.org/doi/10.1145/3392031
https://dl.acm.org/doi/10.1145/3392031
http://dx.doi.org/10.2514/1.8977
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb17
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb17
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb17
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb17
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb17
http://dx.doi.org/10.1016/j.infsof.2017.03.001
http://dx.doi.org/10.1016/j.infsof.2017.03.001
http://dx.doi.org/10.1016/j.infsof.2017.03.001
http://www.sciencedirect.com/science/article/pii/S0950584917301829
http://www.sciencedirect.com/science/article/pii/S0950584917301829
http://www.sciencedirect.com/science/article/pii/S0950584917301829
http://dx.doi.org/10.1145/3196831
http://dx.doi.org/10.1145/3196831
http://dx.doi.org/10.1145/3196831
https://dl.acm.org/doi/10.1145/3196831
http://dx.doi.org/10.1145/2739482.2768462
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb21
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb21
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb21
http://dx.doi.org/10.1016/j.asoc.2015.04.043
http://www.sciencedirect.com/science/article/pii/S1568494615002707
http://www.sciencedirect.com/science/article/pii/S1568494615002707
http://www.sciencedirect.com/science/article/pii/S1568494615002707
http://dx.doi.org/10.1145/3205455.3205513
http://dx.doi.org/10.1145/3205455.3205513
http://dx.doi.org/10.1145/3205455.3205513
http://dx.doi.org/10.1016/j.ejor.2020.11.016
https://www.sciencedirect.com/science/article/pii/S0377221720309620
https://www.sciencedirect.com/science/article/pii/S0377221720309620
https://www.sciencedirect.com/science/article/pii/S0377221720309620
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb25
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb25
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb25
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb25
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb25
http://dx.doi.org/10.1007/978-3-319-30282-9_1
http://dx.doi.org/10.1007/s12065-019-00237-2
http://dx.doi.org/10.1007/s12065-019-00237-2
http://dx.doi.org/10.1007/s12065-019-00237-2
http://dx.doi.org/10.1007/s00500-019-04630-y
http://dx.doi.org/10.1145/2463372.2463547
http://dx.doi.org/10.1145/2463372.2463547
http://dx.doi.org/10.1145/2463372.2463547
http://dx.doi.org/10.1145/2576768.2598334
http://dx.doi.org/10.1109/RE.2018.00-56
http://dx.doi.org/10.1109/RE.2018.00-56
http://dx.doi.org/10.1109/RE.2018.00-56
http://dx.doi.org/10.1080/00207543.2017.1404657
http://dx.doi.org/10.1109/ICCA.2013.6565143
http://dx.doi.org/10.1007/978-3-319-13650-9_3
http://dx.doi.org/10.1007/978-3-662-49014-3_59
http://dx.doi.org/10.1016/j.infsof.2016.04.010
http://dx.doi.org/10.1016/j.infsof.2016.04.010
http://dx.doi.org/10.1016/j.infsof.2016.04.010
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb37
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb37
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb37
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb37
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb37
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb38
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb38
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb38
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb39
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb39
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb39
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb39
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb39
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb40
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb40
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb40
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb40
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb40
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb40
http://refhub.elsevier.com/S0950-5849(22)00003-9/sb40

	Multi-objective integer programming approaches to Next Release Problem — Enhancing exact methods for finding whole pareto front
	Introduction
	Next release problem
	Problem modeling for NRP
	Transformations
	General bi-objective NRP
	Bi-objective NRP with additional constraint
	Tri-objective NRP

	Existing methods
	-Constraint
	NSGA-II

	Our approach
	CWMOIP
	I-EC
	Tri-objective SolRep

	Evaluation
	Research questions
	Setup
	Datasets
	Environment
	Quality indicators

	Answer to RQ1
	Answer to RQ2
	Answer to RQ3
	Threat to validity

	Related work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Revenue
	Appendix B. Constraint
	References

